
Master Thesis

Automated Ontology Mapping of
Tagged Data in a Pandisciplinary
Repository for Research Projects

M. Politze

Master Thesis DKE 12-10

Thesis submitted in partial fulfillment
of the requirements for the degree of Master of Science

of Artificial Intelligence at the Department of Knowledge
Engineering of the Maastricht University

Thesis Committee:
Dr. N. Roos
F. C. Schadd
B. Decker

Maastricht University
Faculty of Humanities and Sciences

Department of Knowledge Engineering
Master Artificial Intelligence

July 2, 2012

This thesis was carried out at:

Center for Computing and Communication
RWTH Aachen University
Seffenter Weg 23, 52074 Aachen

This thesis was supervised by:

Dr. N. Roos B. Decker
(Maastricht University) (RWTH Aachen)

Preface

This master thesis was written at the Department of Knowledge Engineering
of Maastricht University. It was carried out as a part of the research project
Projekt Repository of the Center for Computing and Communication of RWTH
Aachen University. It also concludes my studies at the Department of Knowl-
edge Engineering.
At first I want to thank my supervisor Nico Roos for his guidance during the
research but also for the inspiring discussions about the topic and the inspir-
ing ideas. My appreciations also go to Frederik Schadd for being the second
supervisor of this thesis.
Moreover I would like to express my appreciation for my colleagues at the Center
for Computing and Communication who did not only support me mentally
during my studies but also provided the technical means for the practical parts
of this thesis. Especially I want to thank Bastian Küppers for seemingly endless
hours, nights and days of discussions and hacking im Dienste der Wissenschaft.

Marius Politze
Aachen, July 2 2012

iii

Abstract

The master thesis is set as a part of a research project at RWTH Aachen Univer-
sity. The aim of this project is to build a web based pandisciplinary repository
for research projects that shall become a central component of scientific coop-
eration and for long term storage of research data in different projects at the
university.
The described product is currently developed by the Center for Computing
and Communication of RWTH Aachen University and is supported by the Ger-
man Research Foundation. It will be based on Microsoft SharePoint 2010 that
is extended by several features concerning the tagging and formal retrieval of
data. This thesis presents the implementation of several extensions for Microsoft
SharePoint 2010 that realize some of these goals based on ontology definitions
in the web ontology language.
Apart from implementing and testing the product this thesis covers the theoret-
ical aspects of ontology matching, a task that has to be performed to relate two
ontologies that cover the same domain but are modelled differently or changed
over time. The matching is done on structural basis, therefore a structural
alignment algorithm is proposed. Finally the performance of several variants
of this algorithm is evaluated against the datasets of the ontology alignment
evaluation initiative.

v

Contents

Preface iii

Abstract v

1 Introduction 1

1.1 Setting . 1

1.2 Metadata and Ontologies . 2

1.3 Problem Statement and Research Questions 3

1.3.1 Practical Implementation 4

1.4 Outline of the Thesis . 4

2 Ontologies 7

2.1 Definition . 7

2.1.1 Formal Definition . 8

2.1.2 Ontology Semantics . 9

2.1.3 Terminology and Assertions 10

2.1.4 Expressiveness . 11

2.1.5 Forms of Ontologies . 12

2.1.6 Ontologies and Metadata 12

2.2 Representation . 13

2.2.1 Web Ontology Language 14

2.2.2 Other Syntaxes for Ontology Representation 16

2.2.3 Software . 16

2.3 Ontologies used in Projekt Repository 17

2.3.1 General Ontology . 17

2.3.2 Domain Ontologies . 17

2.3.3 Ontology Conversion . 18

vii

CONTENTS

3 Microsoft SharePoint 21

3.1 Structure of a SharePoint Website 21
3.1.1 Document Management 22
3.1.2 Extensibility . 22

3.2 Semantic Features . 24
3.2.1 Custom Fields . 24
3.2.2 Taxonomy Store . 24
3.2.3 Evaluation . 24

4 Design of the Semantic Repository 27

4.1 The Semantic Repository . 27
4.1.1 OWL API for .Net . 28
4.1.2 Ontology Requirements 30

4.2 Ontology Representation in SharePoint 30
4.2.1 Class Instantiation . 31
4.2.2 List from Ontology . 31

4.3 Working with Ontologies . 32
4.3.1 Ontology Storage . 33
4.3.2 Instantiation . 33
4.3.3 Export . 35

4.4 Retrieval of Tagged Data . 35
4.4.1 Full Text Query . 36
4.4.2 Field Based Query . 36
4.4.3 Query by Class Definition 36

4.5 OWL Representation . 37
4.5.1 Representation of Files Stored in the Repository 37
4.5.2 REST Web Service . 38

5 Ontology Matching 41

5.1 The Ontology Alignment Problem 41
5.1.1 Ontology Alignment Evaluation Initiative 42
5.1.2 Matching Techniques . 42

5.2 Structure Based Measures . 43
5.2.1 Adjacency Matrix . 43
5.2.2 Direct Neighbours . 44
5.2.3 Extended Neighbourhood 44

viii

5.2.4 Centrality . 45
5.2.5 Modularity . 46

5.3 Structure Based Matching Algorithm 47
5.3.1 Prerequisites . 47
5.3.2 Alignment Algorithm . 48
5.3.3 Implementation . 49

6 Experiments 53
6.1 Workshop . 53

6.1.1 Workshop Activities . 53
6.1.2 Workshop Evaluation . 54

6.2 Ontology Conversion . 55
6.3 Ontology Matching . 57

6.3.1 Evaluation Measures . 57
6.3.2 The Benchmark Dataset 58
6.3.3 Results on the Benchmark Dataset 59
6.3.4 The Anatomy Dataset . 66
6.3.5 Results on the Anatomy Dataset 66
6.3.6 Evaluation of the Presented Results 68
6.3.7 Final Considerations . 69

7 Conclusion 71
7.1 Answering the Research Questions 71
7.2 Problem Statement and the Semantic Repository 72
7.3 Future Research . 73

7.3.1 Practical considerations 73
7.3.2 Ontology Alignment . 73
7.3.3 Semantic Web . 74

A OWL API for .Net Class Diagrams 75

B CodePlex Repository 77

C Experiment Results 79

D Prototype Presentation 85

E Bibliography 89

ix

List of Figures

2.1 Different parts of a URI displayed as an example from the defi-
nition of the OWL class entity. 14

2.2 Elements of the LIDO metadata schema. Mandatory elements
are shaded in green. 18

3.1 Physical (gray) and logical (colored) architecture of the Share-
Point platform. 22

3.2 Architechture of a SharePoint site collection. 23

4.1 Class diagram of the OWL API of .Net 29

4.2 Screenshot of the user interface created to instantiate an ontology
within SharePoint. 34

4.3 Screenshot of the list created by the ontology initiator. 34

4.4 Screenshot of the object property field in SharePoint. 35

4.5 Different search facets generated by SharePoint. 37

4.6 Screenshot of the OWL XML export of the repository contents
as seen in figure 4.3 . 39

6.1 Activity diagram for the different action performed with the other
researchers during the workshop. During all of the steps the
comments were recorded. 54

6.2 General structure of the LIDO metadata schema. 56

6.3 Results of the matching algorithm when matching the reference
ontology 101 against itself using the different similarity measures. 60

6.4 Results of the matching algorithm when matching the reference
ontology 101 against itself using different combined similarity
measures. 60

6.5 Results of the matching algorithm when matching 101 against
201 using different combined similarity measures. 61

6.6 Results of the matching algorithm when matching 101 against
202 using different combined similarity measures. 61

xi

LIST OF FIGURES

6.7 Results of the matching algorithm when matching 101 against
222 using different combined similarity measures. 61

6.8 Results of the matching algorithm when matching 101 against
223 using different combined similarity measures. 62

6.9 Results of the matching algorithm using when matching 101 against
201 using the different ordering of the classes. Before the align-
ment the classes were ordered according to the given criteria. . . 63

6.10 Results of the matching algorithm when matching 101 against
the given ontology using the class ordering by pagerank. 63

6.11 Results of the matching dataset 101 against the given ontology
using consistency, number of sinks, depth, pagerank and tabu
search with the given number of iterations. 63

6.12 Results of the matching dataset 101 against the given ontology
using the fully combined distance measure and tabu search with
the given number of iterations. 64

6.13 Results of the matching dataset 101 against the given ontology
using the fully combined distance measure, ordering by pagerank
and tabu search with the given number of iterations. 65

6.14 Results of the matching dataset 101 against the given ontology
using the fully combined distance measure and simulated annealing. 65

6.15 Distance to the reference alignment in the given ontology when
using random assignments (mean over 50 trials, left) and the
depth measure (right) for the assignment. 67

6.16 Distance to the reference alignment in the given ontology when
using number of children (left) or number of sinks (right) for the
assignment. 68

6.17 Distance to the reference alignment in the given ontology when
using pagerank (left) or modularity (right) for the assignment. . 68

6.18 Distance to the reference alignment in the given ontology when
using all measures with equal weight (left) and the same setting
with the additional consistency check (right). 69

A.1 Class diagram of OWL API for .Net showing the inheritance re-
lations of the implemented interfaces. 75

A.2 Class diagram of OWL API for .Net showing the cardinality of
the relations among the defined interfaces. 76

C.1 Full diagram of the results of the matching algorithm matching
101 against 201 using the different similarity measures. 80

C.2 Full diagram of the results of the matching algorithm matching
101 against 202 using the different similarity measures. 81

C.3 Full diagram of the results of the matching algorithm matching
101 against 222 using the different similarity measures. 82

xii

C.4 Full diagram of the results of the matching algorithm matching
101 against 223 using the different similarity measures. 83

D.1 Slides 1-6 of the presentation of the Semantic Repository for the
collaborating researchers. 86

D.2 Slides 7-12 of the presentation of the Semantic Repository for the
collaborating researchers. 87

xiii

List of Tables

2.1 List of the 15 core metadata fields of the Dublin Core Metadata
Element Set. 17

2.2 Some rules used to convert implicit semantics in XML Schema to
explicit semantics in OWL. 19

4.1 Field types from SharePoint and their counterparts from the
OWL 2 specification. 32

5.1 Comparison of different approaches to match ontologies 42

6.1 Properties of some ontologies from the Benchmark Dataset. . . . 59
6.2 Statistical measures for the distribution of the distances to the

reference alignment for the single measures. 66
6.3 Statistical measures for the distribution of the distances to the

reference alignment when accumulation all similarity measures. . 67
6.4 Statistical measures for the distribution of the distances to the

reference alignment for the different measures when also checking
consistency. 69

xv

Chapter 1

Introduction

In current research projects a lot of data in form of images, videos, simulation
results or simply texts are produced. Subsequent projects may be based on
this data and therefore need to retrieve the data from wherever it was stored.
The European Science Foundation (ESF) and the European Heads of Research
Councils (EUROHORCs) have therefore defined a common open and permanent
access policy to access research data [1]:

The collection of research data is a huge investment. Permanent
access to such data, if quality controlled and in interoperable for-
mats, allows other researchers to use them, allows re-analysis of,
for example, long time series and could play a role in ensuring re-
search integrity. EUROHORCs and ESF will address how to best
promote and ensure such permanent access to data generated with
their funding.

This thesis aims at giving a first step in standardizing the storage of research
data so it can be easily retrieved for follow-up projects. It will provide an
infrastructure to create, manage, maintain and apply metadata schemas within
the context of a repository for research projects. These metadata schemas are
described using ontologies.
In this first Chapter the research project as part of which this master thesis
was carried out is described. Then the Problem statement and the research
questions are formulated. Finally a short outline of the thesis is given.

1.1 Setting

This thesis is a part of the research project Projekt Repository funded by the
German Research Foundation. The project itself was initiated by several in-
stitutes of RWTH Aachen University: the University Library [2], the Institute
of Pathology [3], the Department of History of Urbanization [4], the Institute
of Hydraulic Engineering and Water Resources Management [5] as users for
Projekt Repository and the Center for Computing and Communication [6], as

1

1. Introduction

well as the Center for Innovative Learning Technologies [7] as developers and
operators of the project.

The main goal of Projekt Repository is to built a web based platform that
offers a low-threshold service to share, store and retrieve research data among
different groups of researchers from a variety of fields. This service shall then
be integrated into the IT infrastructure offered by RWTH Aachen University.
Finally this support for researchers, called eScience, will have an equivalent
standing as eLearning. A full description of the Project and its position at
RWTH Aachen University is given in [8].

As a basis for the file storage and user management the initiators of the project
decided to use Microsoft SharePoint 2010 which is also used for the eLearning
services offered by RWTH Aachen University. Apart from storing the research
data itself Projekt Repository aims at adding metadata to the stored files. This
metadata has to be added manually to the files as they are uploaded. It usu-
ally includes information about the contents of the data, their source or even
interpretations that were drawn by the researchers.

Each type of metadata has its own predefined range of values. As one example
from medical imaging illustrates: The image source might be one of the follow-
ing: x-ray, MRI, microscopy etc., while the region of the body from which the
data was taken might refer to organs or other parts of the body. Last but not
least the diagnosis that was drawn from the data will be stored.

Prior to the start of this thesis the participating groups compared different
metadata schemas and decided upon the ones that will be used in their special
cases [9]. They further agreed that a central and generic structure has to be
added to Microsoft SharePoint in order to operate with schemas for different
research projects.

1.2 Metadata and Ontologies

A metadata schema usually includes the meaning, range and the associations of
the different fields of the metadata. Some examples for schemas that are used by
the different research groups participating in the research project can be found
in section 2.3. All of these proposed metadata schemas offer a hierarchical
ordering of the terms, most of the schemas offer synonyms. Some rare cases
even have cross references within their hierarchies. Since metadata schema are
well structured, given such a schema different fields of semantic information
about the data can be extracted.

The structure provided by the metadata schema has to be modelled in a way
such that it can be created and maintained by the researchers of the different
fields and then be processed by computers. Metadata in general assigns some
properties to files. As ontologies offer a way to model properties and relations
of objects they might offer a flexible framework to model metadata schemas
used in Projekt Repository. However an ontology offers a wider spectrum of
possibilities. A benefit of this model could be that in an ontology, not only the
metadata, but also the contents of the repository can be described once they
are stored in the repository.

2

1.3. Problem Statement and Research Questions

Another application of such semantic information is the Semantic Web, an initia-
tive lead by the World Wide Web Consortium (W3C). Its aim is to semantically
describe the information, documents and services offered on current web sites.
These descriptions of web resources should be machine readable which in turn
would allow computers to automatically navigate through their contents. The
initial vision of the Semantic Web was expressed by Tim Berners-Lee one of the
initial founders of the World Wide Web [10]:

I have a dream for the Web [in which computers] become capable of
analyzing all the data on the Web – the content, links, and trans-
actions between people and computers. A "Semantic Web", which
should make this possible, has yet to emerge, but when it does, the
day-to-day mechanisms of trade, bureaucracy and our daily lives
will be handled by machines talking to machines. The "intelligent
agents" people have touted for ages will finally materialize.

To achieve this vision of a Semantic Web, resources need to be described such
their the meaning can be deduced by a computer program solely from its de-
scription. To define this meaning and to exchange it among different programs
the semantic web uses ontologies.
For Projekt Repository a machine readable description of its contents could then
serve exactly this purpose. This representation would allow one repository to
provide enough data for an arbitrary agent that is searching for information. All
things considered, Projekt Repository could offer researchers of RWTH Aachen
University a way to easily take advantage of the Semantic Web as it is already
done by other researchers all over the world [11].

1.3 Problem Statement and Research Questions

This thesis aims at creating an extension to Microsoft SharePoint 2010 that
allows researchers of different disciplines to tag multimedia data in different,
user defined, ontologies.
This leads to the following research questions:

• Which structures of Microsoft SharePoint can be used to represent ontolo-
gies?

• How can these structures be used to tag data saved in the repository?

Furthermore after the data is stored in the repository there needs to be a way
to retrieve the data at a later point in time.

• How can different retrieval techniques be used to retrieve data from the
repository?

Projekt Repository will serve as a long time storage for different kinds of research
data. Since ontologies may change over time, or due to other reasons, the system

3

1. Introduction

needs to be flexible to some extent. Thus finally multiple repositories that store
data of the same topic but are using (partially) different ontologies will be
considered.

• Can structural measures describe the elements of an ontology?

• Can different ontologies be matched using only their structure?

For Projekt Repository a matching approach is chosen to deal with ontologies
that are changing over time. There exist several approaches to to this problem
using different techniques and components of the ontology. For this thesis a
structural matching approach is chosen as it allows matching of ontologies that
are not described in a natural language but follow a formal naming scheme
like the histopathological reporting schemes [12, 13] used by the Institute of
Pathology. To perform this structural alignment it is necessary to find structural
measures that can be used to match the elements of ontologies.

1.3.1 Practical Implementation

The work done in this thesis lays the theoretical basis for an extension for
Microsoft SharePoint that will be used for the realization of Projekt Repository.
The product, the Semantic Repository, should provide a work-flow that enables
researchers of different disciplines to operate with ontologies to structure their
research data.
The product will therefore offer the following features:

• An interface to store, retrieve and update the ontologies used in the dif-
ferent projects.

• A functionality that adds the structure provided by the ontology to an
existing repository.

• Ways of retrieving data using the structural information provided by the
ontology.

• An interface that allows multiple repositories to exchange data and meta-
data.

The intermediate versions of the product are continuously integrated into the
system starting from the time the research for this thesis began.

1.4 Outline of the Thesis

The chapters of this thesis are organized in the following way:

• Chapter 2 Ontologies describes the basic theories of ontologies and their
representation for the semantic web that will also be used for Projekt
Repository.

4

1.4. Outline of the Thesis

• Chapter 3Microsoft SharePoint discusses the different techniques available
in Microsoft SharePoint 2010 that might be useful for tagging and storing
ontologies.

• Chapter 4 Design of the Semantic Repository describes the accommoda-
tions that were implemented for Microsoft SharePoint in order to fully deal
with ontologies. Furthermore a work-flow that is used by the researchers
to create and import custom ontologies is introduced.

• Chapter 5 Ontology Matching will first introduce structural measures for
ontologies. These measures will then be used to propose an algorithm to
match ontologies based on their structure.

• Chapter 6 Experiments evaulates the chosen techniques for representing
and working with ontologies in SharePoint. Furthermore the capabilities
of the ontology alignment algorithm are assessed on artificial and real
world data sets.

• Chapter 7 Conclusion finally concludes the research done and gives an
outlook to future research.

5

Chapter 2

Ontologies

Ontologies will be used for the representation and exchange of the metadata
schemas defined in Projekt Repository. This chapter presents the theoretical
basis of ontologies: Description Logics. After a formal definition, different rep-
resentations of ontologies with more and less capabilities are presented and
compared to each other. Finally the Web Ontology Language (OWL) and one
representational syntax OWL XML will be introduced. OWL is the recom-
mended by the W3C to represent ontologies.

2.1 Definition

The term ontology originates from a philosophical discipline that deals with the
things that exist, their categories of being and their relations. In information
science the term ontology was adopted in the early 1990s to describe a set
concepts that can be shared among different agents [14].

A broader definition is given by Dieter Fensel [15]:

Ontologies are introduced to facilitate knowledge sharing and reuse
between various agents, regardless of whether they are human or
artificial in nature. They are supposed to offer this service by pro-
viding a consensual and formal conceptialization of a certain area.
In a nutshell ontologies are formal and consensual specifications of
conceptualizations that provide a shared understanding of a domain,
an understanding that can be communicated across people and ap-
plication systems.

Therefore, in computer science, an ontology has two main tasks:

• define formal semantics that are processable by a computer.

• link the meaning of real-world human terminologies to computer-process-
able content.

7

2. Ontologies

2.1.1 Formal Definition

In order to formally express terminologies from varieties of domains an ontology
o is defined over a description logic which in turn consists of sets of entities all
of which are pairwise disjoint:

Classes A class or concept denotes a set of individuals that share some set of
properties. The Set of classes will be denoted with C.

Individuals Real world objects are denoted as individuals. They may belong
to one or multiple classes. The set of individuals will be denoted with I.

Relations Individuals have relations with other individuals. The set of rela-
tions will be denoted with R.

To be able to express relationships and properties of the elements of these sets,
furthermore a set of operations among these sets is defined:

Specialization A hierarchical dependency between two classes or relations is
called specialization. It is denoted by v.

Instantiation Instantiation or typing is interpreted as membership. Individ-
uals can be members of classes and properties are instances of relations
Instantiation is denoted by :.

Complement The instances not part of a certain class are part of the comple-
ment of that class. The complement of a class is denoted by ¬.

Intersection An individual can be an instance of more classes. Classes can
therefore have intersections containing instances that belong to both classes.
This is denoted by t.

Union Instances belonging to either one or another class are an instance of the
union of both classes. This is denoted by u.

Relationship Two instances may form a relationship, an instance of a relation.
A relationship between classes is denoted a tuple (·, ·).

Restrictions Two kinds of restrictions exist: Universal restrictions, denoted
by ∀ place a restriction on the target class of all instances of a relation.
Existential restrictions, denoted by ∃, ensure that at least one relation
exist with the given target class. Both restrictions form new classes, the
classes of individuals satisfying the restriction.

From this informal definition a description logic can now be formally defined.
This leads to the following definition:

8

2.1. Definition

Definition 2.1. A description logic ALC (attribute logic with complement)
consists of:

C is the set of classes, (2.1)
I is the set of individuals, (2.2)
R is the set of relations, (2.3)
v is a relation over C × C → {true, false} (2.4)
¬ is a relation over C → C, (2.5)
: is a relation over (I × C) ∪ (I × I ×R)→ {true, false} (2.6)
t is a relation over C × C → C (2.7)
u is a relation over C × C → C (2.8)

Together with the operators it is now possible to define the extended set of
classes C. C contains at least the two special classes > (everything) and ⊥
(nothing) and every class from C. Furthermore it contains every possible inter-
section, union, complement and restriction such that.

Definition 2.2. Given the sets C and R the set C is recursively defined as:

C ⊆ C (2.9)
> ∈ C,⊥ ∈ C (2.10)
If c ∈ C and d ∈ C then ¬c ∈ C, c u d ∈ C and c t d ∈ C (2.11)
If c ∈ C and r ∈ R then ∃r.c ∈ C and ∀r.c ∈ C (2.12)
Nothing else bolongs to C (2.13)

2.1.2 Ontology Semantics

To fully define the operations of the ontology an interpretation function π is
used to map the entities from the ontology to real world objects.

Definition 2.3. An interpretation I = 〈O, π〉 consists of an interpretation
function π that maps the entities from from C, R and I to a non empty set of
real world objects O such that:

for all c ∈ C : π(c) ⊆ O, (2.14)
for all r ∈ R : π(r) ⊆ O ×O, (2.15)
for all i ∈ I : π(i) ∈ O, (2.16)

Using the interpretation it is now possible to define the operator semantics for
the description logic. However to interpret the concepts of the extended set of
classes C an extended interpretation π∗ is defined:

Definition 2.4. Given an interpretation I = 〈O, π〉 the extended interpretation
π∗ is defined such that:

9

2. Ontologies

Given c ∈ C, r ∈ R and i ∈ I

π∗(c) = π(c) iff c ∈ C (2.17)
π∗(>) = O (2.18)
π∗(⊥) = ∅ (2.19)
π∗(¬c) = O − π∗(c) (2.20)

π∗(c u d) = π∗(c) ∩ π∗(d) (2.21)
π∗(c t d) = π∗(c) ∪ π∗(d) (2.22)
π∗(∃r.c) = {x ∈ O | for some y ∈ O : (x, y) ∈ π(r) and y ∈ π∗(c)} (2.23)
π∗(∀r.c) = {x ∈ O | for all y ∈ O : (x, y) ∈ π(r) implies y ∈ π∗(c)} (2.24)

The given set of expressions can be extended further by quantifiers or other
logical connectors in the same manner. Nevertheless the operations in the defi-
nitions above are sufficient to define the general notion of an ontology. Some of
these extensions are presented in section 2.1.4.

Using the description logic ALC and a set of real world objects O, it is now
possible to define assumptions that hold within the context of an ontology o.
These assumptions can be used to model the domain of the ontology. This
model is defined in the knowledge base K = (T ,A).

2.1.3 Terminology and Assertions

On top of description logic an ontology builds a terminology and assertions to
describe properties of things described. The terminology or TBox introduces
the classes and properties that exist in the ontology. Furthermore the TBox
introduces the properties of classes such as their hierarchical relationship or
restrictions on their properties. The assertions or ABox define the knowledge
about individuals and their relations within the ontology. Together the TBox
and the ABox build the knowledge base K of an ontology. In general the inter-
pretation I should satisfy the knowledge base K:

Definition 2.5. An interpretation I = 〈O, π〉 satisfies a knowledge base K =
(T ,A):

I |= K iff I |= T and I |= A (2.25)
I |= T iff for every τ ∈ T : I |= τ (2.26)
I |= A iff for every α ∈ A : I |= α (2.27)
I |= c v d iff π∗(c) ⊆ π∗(d) (2.28)
I |= c = d iff π∗(c) = π∗(d) (2.29)
I |= a : c iff π(a) ∈ π∗(c) (2.30)
I |= (a, b) : r iff (π(a), π(b)) ∈ π∗(r) (2.31)

To clarify the roles of the TBox and the ABox for the ontology consider the
following example:

10

2.1. Definition

Given an ontology o and a knowledge base K = (T ,A). The TBox T may define
the following assertions:

T = {Person v >,
Scientist v Person u ∀meetsAtBar.Waiter,

Waiter v Person, } (2.32)

This TBox builds a class hierarchy of persons, being either scientists or waiters
but not both since they exclude each other. Furthermore the object property
meetsAtBar is defined with a restricted range (waiters) and Domain (scientists).
The TBox basically defines the schema of the data described by the ontology.
It is now possible to introduce the ABox A to describe the actual instances that
populate the ontology.

A ={Sheldon : Scientist,
Leonard : Scientist,
(Leonard, Penny) : meetsAtBar} (2.33)

The given ABox describes three persons and their relation. Sheldon and Leonard
are defined to be scientists. Furthermore the meetsAtBar relation between
Leonard and Penny is defined.
Using the whole knowledge base K = (T ,A) even from this small example
conclusions can be drawn. In equation 2.32 the TBox defines everyone being in
a meetsAtBar relation with a scientist as a waiter. As a human it is quite easy
to conclude that therefore Penny must be a waitress.

2.1.4 Expressiveness

As already mentioned in the section 2.1.2 the description logic on which the
ontology is based can be extended by several logical connectors and quantifiers.
To be able to quickly determine which capabilities a certain model of an ontology
has a special naming convention is introduced.

ALC+ or S is the basic form of description logics it allows negotiation of atomic
classes, intersection between classes, quantifiers and complements. The +

denotes the possibility to define properties as transitive.

I defines the notion of inverse properties.

N defines numeral quantifiers such as "at least 2" or "between 1 and 3"

Q extension to N , numeral quantifiers can have a type.

O defines class enumerations: "one of".

F defines functional properties.

H defines a simple hierarchy for relations.

R extension to H, defines complex relations between relations.
(D) allows usage relations with data types such as numbers or text.

11

2. Ontologies

2.1.5 Forms of Ontologies

Given the formal definition of an ontology, different ways of using it to define
semantics for real world data can now be considered. In [16] a set of different
forms of ontologies are presented. These different manifestations offer a range
of expressive features from a very limited to a full representation of the formal
features defined in section 2.1.1.

Controlled Vocabularies are the most simple variety of ontologies. They
only know classes and individuals belonging to a single class. Thus their
expressiveness is the most limited as only the instantiation of individuals
is modelled. Nevertheless controlled vocabularies are popular for tagging
applications.

Taxonomies are an extension to controlled vocabularies. They do not only
offer a set of classes but also include the notion of specialization. Thus a
taxonomy cannot only assign a class to an individual but also has a hier-
archical interclass relation thus classes can be a subclass of a single other
class. Taxonomies are quite popular in biological and medical applications
where they are used since the 18th century.

Thesauri can be seen as another extension to controlled vocabulary. Instead
of introducing a hierarchy they introduce the possibility to define equal
classes. Among the equality relation other relations between classes, such
as parent-child, may be introduced. Together with these other relations
the thesauri then even extend taxonomies. Nevertheless the interclass
relations have to be defined beforehand and cannot be defined by the
thesaurus itself. Among the structural relations thesauri also introduce
the possibility to describe the classes in natural language.

Topic Maps are one of the most recently developed forms of ontologies. In-
stead of giving a set of classes, topic maps define relations among indi-
viduals. Although this might seem more restrictive than a thesaurus, if
used correctly, topic maps offer a wider range of expressions to be made.
Topic maps regard classes as meta-individuals that can be connected with
a subclass of relation, whereas individuals might be connected to classes
using an instance of relation. A similar relation can be introduced for
equality of classes or individuals. Topic maps can define these relations
and introduce new relations if needed.

Ontologies itself define the most flexible framework for semantic description.
Classes and relations can be in hierarchies but can also have more than
one parent to form a graph of classes and relations. By using formal logic
classes can be described and therefore implicitly assigned to individuals
based on their relations. Ontologies as described in section 2.1.1 can ex-
press all the other semantic schemas discussed above and, with the usage
of description logic, offer an even wider range of expressions.

2.1.6 Ontologies and Metadata

The definition of ontologies can now be used to describe how metadata will be
mapped to ontologies. In general metadata gives additional information about

12

2.2. Representation

a subject, in computer science usually a file. This information is well structured
and therefore divided into fields with a certain range of values.

In an ontology it is possible to define individuals which in turn can be more
closely described by adding properties that either form a relation to another
individual or some value.

To translate metadata to an ontology for every field of the metadata schema a
relation is introduced in the ontology. Data ranges from the metadata schema
are converted to data types. The files described in the metadata are modelled
as an instance in the ontology.

This conversion shows clearly that an ontology is capable of expressing the
semantics from the metadata schema. Nevertheless ontologies also define how
the files are to be represented and additionally offer the possibility to build cross
references among instances.

2.2 Representation

As the ontologies itself offer the widest possible spectrum of expressions it now
is crucial to find a representation of ontologies that can be processed by a com-
puter. There are several formats that offer more or less complete support of the
different features of ontologies. Nevertheless the World Wide Web Consortium
(W3C) gave a recommendation for semantic web applications to use the Web
Ontology Language (OWL) [17].

From the list describing the different description logics it gets quite clear that
some of the extensions of description logic are needed to be available to actually
work with ontologies. The OWL language specification [17] defines three basic
editions of OWL:

OWL Lite is the most basic variant using SHIF (D)

OWL DL extends OWL Lite by using SHOIN (D)

OWL 2 is the most recent development and therefore allows the most powerful
expressions. SROIQ(D)

When following the development of the different versions it gets clear that the
expressiveness gradually increases from OWL Lite to OWL 2. Nevertheless the
languages are syntactically compatible in such a way that a document designed
for OWL Lite will be interpreted in the same way when using an OWL 2 aware
program.

Even though the expressiveness increases among the different versions. The
more expressive the representation gets, reasoning gets computationally more
intensive to decide weather a statement is valid or not. Thus the variant to be
supported has to be chosen carefully.

13

2. Ontologies

2.2.1 Web Ontology Language

The Web Ontology Language (OWL) XML is an XML-based syntax to describe
ontologies. Its main features and their correspondence in the formal definition
of ontologies are presented in this section. The OWL syntax is based on the
Resource Description Framework (RDF) [18] and thus uses some of the elements
from RDF. The OWL XML syntax is defined by the W3C in [17].

Before having a deeper look at OWL syntax a first basic part of the OWL entities
is introduced: entity names. Entity names can occur on every type of entity,
they provide a unique name for classes, individuals, relations and datatypes.
Usually this name is given in form of the Uniform Resource Identifier (URI) of
the XML document plus a fragment denoting the actual name of the entity. [19]
defines the URI as displayed in Figure 2.1.

Even though the most common structures of OWL are introduced below this
list is far from complete. Please refer to [17, 20] for a full set of axiomatic rules
and expressions.

Listing 2.1 shows a declaration of a class in OWL syntax. The tag owl:Class
refers to the class as it is defined in the OWL namespace. The OWL namespace
as well as owl:Class can be identified by their URI http://www.w3.org/2002/
07/owl# or http://www.w3.org/2002/07/owl#Class respectively. Further in-
formation on the general XML format and XML namespaces can be obtained
from [21].

1 <owl: Class rdf: about ="http :// www.owl -ontologies.com / travel.owl#Destination ">
2 </ owl: Class >

Listing 2.1: An example of a class declaration in OWL taken from the "Travel
Ontology".

The example in Listing 2.2 shows the syntax of a class specialization. The
tag rdfs:subClassOf is defined in the RDF schema namespace and is another
indicator that OWL itself is based on RDF. Analogous to the class specialization
OWL relations can be specialized.

1 <owl: Class rdf: about ="http :// www.owl -ontologies.com / travel.owl#Beach ">
2 < rdfs : subClassOf

rdf: resource ="http :// www.owl -ontologies.com / travel.owl#Destination "/>
3 </ owl: Class >

Listing 2.2: An example of a subclass relation in OWL taken from the "Travel
Ontology".

http://www.w3.org/2002/07/owl#Class

scheme authority path fragment

Figure 2.1: Different parts of a URI displayed as an example from the definition of
the OWL class entity.

14

http://www.w3.org/2002/07/owl#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2002/07/owl#Class

2.2. Representation

The instantiation of a class is done with the tag owl:NamedIndividual. List-
ing 2.3 shows the instatiation of an indidual belonging to the class Beach
from listing 2.2. The defintion of the class instantiated by the individual is
given in the rdf:type tag. An alternative to the instantiation with the tag
owl:NamedIndividual is to directly use the name of the class that is instantiated
as a tag. Relations can be instantiated in the same two ways.

1 <owl: NamedIndividual
rdf: about ="http :// www.owl -ontologies.com / travel.owl#BondiBeach ">

2 <rdf: type rdf: resource ="http :// www.owl -ontologies.com / travel.owl#Beach "/>
3 </ owl: NamedIndividual >

Listing 2.3: An example of an individual in OWL taken from the "Travel Ontology".

When it comes to relations OWL distinguishes between interindividual relations
and individual-datatype relations. Inter-individual relations are denoted as ob-
ject properties. They define a range and a domain in form of an OWL class
and thus delimit the number of individuals the property might be applied to.
A basic declaration of an object property is displayed in listing 2.4, neverthe-
less the property may be declared to have more detailed characteristics such as
transitivity or symmetry.

1 <owl: ObjectProperty
rdf: about ="http :// www.owl -ontologies.com / travel.owl#hasActivity ">

2 < rdfs : range
rdf: resource ="http :// www.owl -ontologies.com / travel.owl#Activity "/>

3 < rdfs : domain
rdf: resource ="http :// www.owl -ontologies.com / travel.owl#Destination "/>

4 </ owl: ObjectProperty >

Listing 2.4: An example of a object relation in OWL taken from the "Travel
Ontology".

In contrast to the object property, listing 2.5 defines a datatype property.
These are used to describe relations between individuals and values of a spe-
cific datatype. As in the case of object properties domain and range for the
datatype property are defined but this time the range has to be a datatype.
The datatypes that can be used as a range are a subset of the standard XML
datatypes.

1 <owl: DatatypeProperty
rdf: about ="http :// www.owl -ontologies.com / travel.owl#hasEMail ">

2 <rdf: type rdf: resource =" &owl;FunctionalProperty "/>
3 < rdfs : domain

rdf: resource ="http :// www.owl -ontologies.com / travel.owl#Contact "/>
4 < rdfs : range rdf: resource =" &xsd;string "/>
5 </ owl: DatatypeProperty >

Listing 2.5: An example of a datatype relation in OWL taken from the "Travel
Ontology".

Last but not least the code in listing 2.6 gives an example of a logical expres-
sion that can be used to limit the usage of certain classes. Apart from the
disjoint operator that separates the individuals of two classes set operations like

15

2. Ontologies

intersection, union and complement as well as the full enumeration of possi-
ble individuals can be used. Furthermore restrictions on the properties can be
defined in the classes.

1 <owl: Class rdf: about ="http :// www.owl -ontologies.com / travel.owl#RuralArea ">
2 < rdfs : subClassOf

rdf: resource ="http :// www.owl -ontologies.com / travel.owl#Destination "/>
3 <owl: disjointWith

rdf: resource ="http :// www.owl -ontologies.com / travel.owl#UrbanArea "/>
4 </ owl: Class >

Listing 2.6: An example of a logic expression in OWL taken from the "Travel
Ontology".

The description of these complex classes requires an inference engine to find the
individuals belonging to such a class. Nevertheless they can also be declared
explicitly.

2.2.2 Other Syntaxes for Ontology Representation

OWL XML is not the only syntax that is used to represent ontologies. Multiple
other formats exist and are commonly used in different disciplines to represent
ontologies. In general these representational languages can be divided in two
classes:

Explicit Semantics These syntaxes define an explicit semantic for the usual
structures of ontologies as defined in 2.1.1. These syntaxes are usually explicitly
designed with the theoretical construct of an ontology in mind and therefore well
suited to represent ontologies. They also aim to be human readable. Examples
of languages following these concepts are OWL XML, OWL functional syntax
[22], Manchester OWL Syntax [23], OBO Flat File Syntax [24], KRSS Syntax
[25] and Turtle [26].

Hidden Semantics This set of languages does not explicitly define semantics
for the constructs of the language. Even though it is possible to define individ-
uals of certain types or classes as well as relations there are usually only very
few relations that have a specific meaning such as specialization. Deriving an
ontology in this case is no longer straight forward and usually needs additional
reasoning. Examples from this set of languages are XML Schema (XSL) [27]
and custom CSV or XML files.

Even though languages with hidden semantics are far from optimal, many on-
tologies from social sciences like LIDO and ISO 19115 are expressed in XML
Schema (see section 2.3).

2.2.3 Software

In the process of designing an ontology for Projekt Repository it is not feasible
for the final users to write the ontology files manually. Therefore, together with

16

2.3. Ontologies used in Projekt Repository

the semantic functionality, a software tool will be introduced to create, display
and edit ontologies.
The software that will be used fot this purpose is Protégé-OWL [28]. Protégé-
OWL is a free and open source software that allows GUI based editing of on-
tologies. Other than that OWL Protégé-OWL has the ability to save and read
ontologies in a variety of different formats. This is especially useful as existing
ontologies that will be used for Projekt Repository need to be converted to follow
OWL syntax.

2.3 Ontologies used in Projekt Repository

Even though Projekt Repository is meant to be used with any ontology this
section will briefly present the ontologies used by the different participating
research groups at the current state of the project. In general ontologies with two
different aims can be found: General ontologies that describe digital data and
its properties whereas domain specific ontologies usually describe the contents
of the data.

2.3.1 General Ontology

The general ontology that is used by every project group is the Dublin Core
Metadata Element Set [29]. The traditional set contains 15 properties that
shall be defined for every document in a collection. Table 2.1 gives a brief
overview of the core fields.
Apart from being used by a variety of organizations, universities and libraries
all over the world, the Dublin Core Metadata Element Set was ratified as a stan-
dard by several standardisation organisations as IETF RFC 5013, ANSI/NISO
Standard Z39.85-2007, and ISO Standard 15836:2009. Furthermore all of the
standards include the option to add additional metadata information as needed.
Though very general the acceptance and flexibility of the Dublin Core Metadata
Element Set makes it an ideal base format to interchange tagged elements.

2.3.2 Domain Ontologies

Apart from the Dublin Core Metadata Element Set every project group defined
a domain ontology that they want to use to organize their data. These ontologies
are usually much bigger and less standardised.

Title Creator Subject
Description Publisher Contributor

Date Type Format
Identifier Source Language
Relation Coverage Rights

Table 2.1: List of the 15 core metadata fields of the Dublin Core Metadata Element
Set.

17

2. Ontologies

MESH The Medical Subject Headings is a popular medical thesaurus that is
maintained by the U.S. National Library of Medicine. MESH offers a twelve level
hierarchy leading to a total of about 26,000 terms as well as about 177,000 syn-
onyms for these terms. The most prominent application of MESH is PubMED,
a meta database that makes available medical articles [30].

LIDO Schema Lightweight Information Describing Objects is a metadata
schema that defines properties to be defined by the user for the stored data
instances. In contrast to MESH it does not define many terms but rather defines
the structure of the metadata. LIDO was proposed in 2010 by the International
Council of Museums (ICOM) for the description of historical artefacts. Figure
2.2 gives a brief overview of the different fields defined by LIDO.

ISO 19115 Is a metadata scheme for geographic information [32]. It provides
structures to add spatial, qualitative and temporal information to digital ge-
ographic data. ISO 19115 is the mandatory metadata schema for geographic
publications in the European Union and is therefore widely known and used.
The original metadata schema is defined in XML Schema but inoffical conver-
sions to OWL exist.

2.3.3 Ontology Conversion

To convert ontologies with hidden semantics to ontologies with explicit seman-
tics some domain knowledge is required. For the conversion of XML Schema
into an OWL ontology two similar approaches were developed independently
by [33, 34]. The most important operations to convert the XML Schema to an
ontology are summarized in table 2.2 based on [34].

While XML Schema is quite structured other formats, especially those for word
lists, like MESH, do not have a standardized structure. However for simple
controlled vocabularies two simple conversions can be performed: Every entry
in the thesaurus is defined as a class or as an individual. In the first approach
the instance to be tagged will be an instance of the generated class. The second

Figure 2.2: Elements of the LIDO metadata schema. Source: [31]

18

2.3. Ontologies used in Projekt Repository

XML Schema OWL Shared semantics
element|attribute DatatypeProperty Relation between instances

ObjectProperty
complexType|group Class Contextual restrcitions

complexType//element Restriction Restriction of a relation
restriction@base subClassOf Specialisation

sequence intersectionOf Combinations of relations
choice unionOf

Table 2.2: Some rules used to convert implicit semantics in XML Schema to explicit
semantics in OWL.

approach is more flexible. For every list of vocabulary a single class and an
object property having this class as domain is defined. Every word in the list is
then represented as an individual of the class. The instance to be tagged then
has to define a relation using the object property.

19

Chapter 3

Microsoft SharePoint

Since it will be the basis for the Semantic Repository, this chapter will give an
overview of the current state of the Microsoft SharePoint platform. At first the
general structure of a SharePoint website will be described. Then some techni-
cal details required to extend the SharePoint document management platform
will be presented. The last section in this chapter will discuss the features for
semantic content currently available in SharePoint and give an impulse on where
the current structures actually can be extended to work with ontologies.

3.1 Structure of a SharePoint Website

Microsoft SharePoint is designed to be an enterprise-scale system that can be
used to support various processes. The default SharePoint configuration pro-
vides document and content management and collaboration features on a web
based platform. All of the offered services are integrated with other active di-
rectory services offered by other Microsoft products such as Windows Server
2008.

When running SharePoint on a very large scale multiple servers form a server
farm. Since all servers of a farm offer the same services when seen from the
outside, they behave like a single server. A schema of the SharePoint server
architecture is displayed in figure 3.1. Apart from the physical setup of multiple
servers with different capabilities, such as web and database servers (2,7,9),
a SharePoint server farm is logically divided into multiple independent web
services (4). A web service is then divided into multiple web applications (8)
which in turn consist of multiple site collections (10).

This logical structure can also be observed in the URI of the SharePoint Web-
site. The domain name denotes the web service, whereas the web application is
identified by the port. Finally the site collection and its subsites are identified
by the path.

21

3. Microsoft SharePoint

Figure 3.1: Physical (gray) and logical (colored) architecture of the SharePoint
platform. Source: [35]

3.1.1 Document Management

Projekt Repository mainly aims to use SharePoint as a document management
system. Every research project using Projekt Repository will have its own site
collection containing multiple lists of stored documents (see figure 3.2: 3).

Each of these lists can store uploaded files as items (5). Furthermore meta-data
of the uploaded files, such as image resolution or upload date, is saved in several
named fields (4). Among the default fields for some types of data, such as image
resolution for images, it is also possible to define custom fields to store arbitrary
text or restrict its contents to special data types such as numbers or dates.

All of these document management capabilities come with the default instal-
lation of SharePoint and build the basis for storing the research data in the
repositories.

3.1.2 Extensibility

Obviously the goal to add features to deal with semantic information from on-
tologies to SharePoint requires a high degree of extensibility. Among the web
front-end that is offered by SharePoint it is possible to access all the function-
alities via a well documented API using the C# programming language. This
API allows all features of SharePoint to be customized. The next paragraphs
will point out some of the most interesting features:

Lists are the basic organisational unit that is delivered by SharePoint. A list
stores data and metadata of a certain type. Each item in a list can be
considered an individual having multiple properties. The properties are

22

3.2. Structure of a SharePoint Website

Figure 3.2: Architechture of a SharePoint site collection. Source: [35]

denoted by various fields that can be added to the list. The built in fields
have various types such as numerical, text or date.

Custom Fields denote field types of a list that can be automatically checked
for validity. The actual kind of validity checks has to be implemented as
an SharePoint extension which is then loaded into SharePoint server as
an additional program library. Using this type of extension it is virtually
possible to provide arbitrary field types.

Web Parts are, in contrast to custom fields, not only an extension to the
already existing lists but rather provide a custom user interface on the
SharePoint website.

Services make up a different way of customizing the way SharePoint works.
Services do not tackle the front end or user interface but rather build a
back end interface. A service thus can be used to offer custom web pages
or XML data that can be read by other programs.

Independent of the actual type of extension it is possible to define the scope of
the extension. The broadest variant is to distribute the extension on the com-
plete server farm but it can be reduced to web service, web application or even
site collection scope. Also when deploying it to a complete server farm exten-
sions can be activated for single services, applications or collections respectively
granting the possibility to centrally control the number of extensions running
on the different site collections.

23

3. Microsoft SharePoint

3.2 Semantic Features

Also in the domain of semantics SharePoint offers some features and APIs to
be used. In this section some of the features already mentioned in section 3.1.2
will be revisited and each of these features will be examined for their capability
to work with semantic data.

The selected feature should provide the means to interact with the semantic
information from the ontology such as class selection or instantiation of rela-
tionships. Therefore the feature needs to be flexibly customizable in terms of
the data that is stored.

3.2.1 Custom Fields

As already discussed in section 3.1.2 custom fields offer a possibility to add cus-
tom formated data to lists. These fields then can be used to add data properties
that are restricted to some set of values.

Apart from just checking the validity of the entered data, a custom field can
also perform auto completion and display suggestions for partially entered data.
Even though all functionalities of custom fields need to be programmed, their
flexibility makes them a possible choice for controlled vocabularies as well as
other semantic structures.

3.2.2 Taxonomy Store

The central taxonomy store of SharePoint can be used to maintain a custom
taxonomy. The taxonomy itself can be entered or changed manually from within
SharePoint or can be imported from a CSV file.

The imported taxonomy can then be made available as a taxonomy bound field
in a list. When it comes to the offered features, the taxonomy fields is quite
equal to custom fields as they also support auto completion and suggestions for
values. Additionally they do not require any coding to be done before they can
be used.

3.2.3 Evaluation

The discussed semantic features offer different possibilities to extend the seman-
tic capabilities of SharePoint. Nevertheless both variants have some drawbacks.

The custom fields can hold arbitrary values, but have to be implemented manu-
ally for each range to be covered. Custom fields therefore are very flexible but by
themselves cannot be changed by the users of Projekt Repository. Nevertheless
they offer the possibility to implement generic fields to map generic properties
that are read from an ontology.

The taxonomy store has clearly the advantage that it is fully integrated in
SharePoint. This enables the user of Projekt Repository to interact with this
feature easily. Nevertheless the taxonomy store is limited to handle taxonomies.

24

3.2. Semantic Features

Even though taxonomies will suit for most schemes used a less limited approach
is preferred.
Considering the discussed semantic features it seems logical to introduce a cus-
tom semantic field to fully represent ontologies. The implementation of this
feature is discussed in Chapter 4.

25

Chapter 4

Design of the Semantic
Repository

As already discussed in section 3.2 SharePoint offers different semantic features.
Nevertheless none of them is capable of representing an ontology. This chapter
describes the steps taken to implement an ontology store for Microsoft Share-
Point.

The first section describes the structures that make the ontologies accessible
within the program. The second section gives an overview of how the different
features of SharePoint are used to enable the user to work with the ontology.
Finally the last section describes a work-flow designed for the users to create a
repository for their project by supplying an ontology.

After storing the research data in the repository it shall be retrieved using differ-
ent techniques. The last two sections will describe how the usage of ontologies
can influence and support different ways of data retrieval and search in the
repository. The former shows different ways for the user to search in the system
to retrieve data. The last section will describe how the information from the
ontologies is used to give a machine readable output containing the data stored
in the repository.

4.1 The Semantic Repository

Before being able to work with ontologies a representation was implemented in
order to access the different parts of the ontologies. This representation was
designed in such a way that the full spectrum of capabilities of ontologies can
be used intuitively when programming applications that deal with ontologies.

Since the extensions of SharePoint need to be programmed in a .NET language a
small research has been performed to find an already existing library for handling
ontologies. Apparently all of the implementations found were either based on
Java or have not been maintained for several years. Thus it was necessary to
implement a .NET based API to access ontologies.

27

4. Design of the Semantic Repository

The presented API is based on the structure of OWL API, an open source Java
API that is widely seen as a reference implementation of the OWL 2 format for
the Java programming language [36].

4.1.1 OWL API for .Net

The OWL API for .Net offers several interfaces each of which aim to represent a
specific part of an ontology. All of the interfaces are designed in a way that they
can be implemented for arbitrary sources supplying the actual ontology. As a
reference and for the further application for Projekt Repository every interface
was implemented to comply with input formatted in the OWL 2 Syntax as
presented in section 2.2.1. Also the conversion from XML Schema to an ontology
was implemented as described in section 2.3.3.

Working with the OWL API for .Net

Besides the interfaces and classes for representing the ontologies, OWL API for
.Net also offers structures for parsing input files such as an OWL 2 XML file.
Again, as the interfaces for representation of the ontology, these interfaces are
independent of the actual format and can be implemented for other sources than
OWL 2 XML such as Turtle [26].
The interface IOntologyParser provides different functionalities to load an on-
tology from different sources. It therefore returns an instance of IOntology that
in turn represents the specific ontology that was loaded from the file. At the
current state of the development it is not possible to manipulate the ontologies
structure once it was loaded from the file.

Interfaces defined by the OWL API for .Net

Among the IOntology interface the API defines the interfaces IDataProperty,
IObjectProperty that represent the individual-datatype and the inter individ-
ual relations defined in the ontology. The interface IAnnotationProperty serves
annotations that can be attached to any other interfaces of the library. These
annotation properties usually contain meta information such as an explanation
or a human readable or even localized name.
Classes are represented by the interface IClass. Apart from the sole definition
of the class it also builds a hierarchy of the classes by giving a set of sub- and
super classes as well as equivalent classes. Using the reference Thing to the top
most class of an ontology the class hierarchy can be traversed. An instance of
a class is represented by an implementation of the IIndividual interface.
The datatypes defined by the ontology are represented by the IDataType in-
terface. A single value of such a datatype is represented by an instance of the
IValue interface.
The ontology itself forms a structure that is composed of the parts that were
already introduced in section 2.1.1 as depicted in Figure 4.1. Since the parts
of IOntology closely relate to the formal definition it is easy to use and thus
knowledge about formal ontologies can be used to operate the library.

28

4.1. The Semantic Repository

Figure 4.1: Class diagram of the OWL API of .Net

Usage Example

For Projekt Repository two implementations of the presented interfaces were
developed. One for XML Scheme and the other for OWL 2 XML syntax as they
were presented in sections 2.2.1 and 2.2.2 respectively.
In general both implementation follow the same pattern. At first an instance of
a parser is created, which is then used to load the file and build up the ontology.
The parsers implement the IOntologyParser interface defining function to load
the ontologies from various sources such as files and memory streams. Listing
4.1 gives an example on how the OWL XML parser class is used in C# to load
an ontology from a file.

1 OwlXmlParser p = new OwlXmlParser ();
2 IOntology o = p.Load(@"PATH TO OWL FILE");
3 foreach (IClass c in o. Classes)
4 {
5 Console . WriteLine (c. Label);
6 }

Listing 4.1: A code snippet showing how to parse an XML file containing an ontology
in OWL syntax.

Listing 4.2 gives another example of working with classes. Instead of simply
giving a flat list as in the previous example, this example indents subclasses when
printing them. Analogous to the subclasses set every class has a superclasses
set. These sets can be used to navigate through the class graph.

1 ...
2 IOntology o = ...
3 PrintClasses (o.Thing , "\t");
4 ...
5 private void PrintClasses (IClass c, string space)
6 {
7 string nextSpace = ’\t’ + space ;
8 foreach (IClass childClass in c. SubClasses)
9 {

10 Console . WriteLine (childClass . Label);
11 PrintClasses (childClass , nextSpace);
12 }
13 }

Listing 4.2: A code snippet showing how to display a full class hierarchy from of an
ontology.

29

4. Design of the Semantic Repository

The given examples show only a small portion of the possibilities offered by the
API. There are more ways of dealing with classes, individuals, data and object
relations. A full class diagram containing all the functions and properties defined
by the interfaces can be found in Appendix A.

4.1.2 Ontology Requirements

To ensure that the SharePoint extension is able to work with ontologies some
technical restrictions are posed on the ontology to comply with assumptions of
the SharePoint extension. First of all the ontology is supposed to be in OWL
2 XML representation as presented in section 2.2.1. If the source ontology
does not comply with this syntax it can be converted. Especially for ontology
syntaxes with explicit semantics most editors can convert between formats [28].
For implicit semantics conversion can be performed as described in section 2.3.3.
As the main purpose of the implementation of OWL for .NET is mainly used to
get information about taxonomies and, compared to general description logics,
quite simple metadata schemas the current implementation only supports the
expressiveness of the most limited variant OWL-Lite: SHIF (D). Unknown
terms and definition in the input file will be ignored.

Apart from restrictions on the expressiveness some formal restrictions are im-
posed on the declaration of the classes. The URI of an entity should be unique
within the ontology. Additionally, if available, the labels defined for the OWL
entity will be used for on screen rendering.

4.2 Ontology Representation in SharePoint

In this section two issues of the implementation of ontologies for Projekt Repos-
itory are addressed. The first covers which parts of the ontology are used in
the repository on a theoretical basis. The second covers the way of making this
information available to the user.

Primarily the classes, datatype and object properties will be read from the
ontology. Also these are the structures used for the semantic tagging. In general
the following assumption will be made: Every uploaded file in the repository is
an instance in the ontology the repository shall then enable the user to specify
data and object properties as well as the instantiation relation.

The second problem encountered when trying to built ontology support for
SharePoint was to find the means offered by SharePoint to make the information
actually accessible for the user. Therefore for the features already discussed in
section 3.1.2 it needs to be evaluated if they can be used to make certain features
of the ontology accessible. Two different ways of accessing the ontology from
SharePoint were selected to be further investigated for the development of the
Semantic Repository:

Class instantiation or is-a-relationship is a very easy way of adding semantic
information. For each uploaded file in a SharePoint list an additional field
is offered. This field then can be filled with the name of one ore more

30

4.2. Ontology Representation in SharePoint

classes. This method itself is inspired by traditional tagging with a fixed
dictionary as it is done in many other applications already available.

List from ontology is another way of using the information provided by the
ontology in the repository. This method uses the properties defined in the
ontology and adds them as fields to a list. Using this method an ontology
can be used to define and create the complete structure of a repository.

4.2.1 Class Instantiation

Compared to the expressive power of ontologies this way of working with them
is quite constrained. Nevertheless this method of dealing with semantic infor-
mation is quite common and thus it is easy for the user to adopt it.

For example class instantiation allows the user to specify a class for an uploaded
file in the repository. Suppose the TBox defines a class called LicenceDocument.
If the user has uploaded a file named GPLLicense the following statement can
be added by class instantiation to the ABox:

A = {. . . , GPLLicence : LicenseDocument} (4.1)

Apart from the usability issue the class instantiation approach can make use of
high level techniques offered by SharePoint such as the taxonomy store. Classes
are read from the ontology and then are added to a taxonomy in the taxonomy
store. This allows the use of the taxonomy field types that are already available.
Still it requires that the class structure is expressed as a taxonomy or needs to
be converted in some way into a taxonomy without loosing to much information.

As a first approach it was chosen to do this transformation by doing a full
breadth first traversal of the class graph from the ontology. Every class that
is encountered is then added to the taxonomy store. After this procedure each
of the classes is at a topmost position in the hierarchy and thus this approach
results in the flattest possible hierarchy. In case a conflict occurs, that is a class
with two or more parents, the flattest possible hierarchy will be preferred. If
that ties the first sub class relation found in the file will be used.

In the course of the development of Projekt Repository it turned out that almost
all of the structures used by the different researches are hierarchies. Since struc-
tures that were hierarchies in the first place will be stored exactly as defined,
this approach seemed suitable for the conversion.

The information that was added to the items by specifying the classes can then
be used to filter the list contents or for the retrieval of certain items from the
repository as it will be discussed in section 4.4.

4.2.2 List from Ontology

The second approach that makes ontologies available in the repository uses more
of the expressive power as the pure class instantiation. This approach aims at

31

4. Design of the Semantic Repository

describing the items in the repository in more detail. This approach uses the
object and datatype properties from the ontologies.
Given a that a TBox defines the following properties: a data property releasedAt
connecting an instance and a date and an object property hasLicense connect-
ing an instance and its license. Based on these relations it is now possible to
define properties of an uploaded file such that:

A = {. . . , (file, ”2012− 05− 15”) : releasedAt} (4.2)

Furthermore when combined with the information from equation 4.1 relations
among different instances can be modelled such as:

A = {. . . , (file,GPLLicense) : hasLicense} (4.3)

For the realization within SharePoint this gives the user the following possibility:
They can specify the structure and the information that shall be provided for
the items in the ontology and once this is done the repository automatically
maps the values of the fields in a list to the properties of the ontology.
The ontology further defines the range of the field as such. For data properties
the most common basic data types were manually matched from the data types
offered in OWL to the data types offered by SharePoint. Table 4.1 gives a brief
overview of the different types that were matched. All other data types are
represented by SharePoint as a string. A special case is formed by the object
properties as form them a special lookup field is generated that enables the user
to select another item already contained in the list. This selection then initiates
the relation among the files.
The information added by this approach can then be used by a reasoning engine
to extract certain information such as the membership to some class that is
restricted on the value of certain properties. In section 4.4 several ways of
working with this kind of structured and tagged data are discussed.

4.3 Working with Ontologies

After introducing the different ways of accessing the information stored in the
ontologies in SharePoint this section shows some practical examples of how the

SharePoint OWL 2
Integer xsd:integer
Number xsd:double
Text xsd:string
URL xsd:anyURI

DateTime xsd:dateTime
Boolean xsd:boolean
Choice owl:oneOf

Table 4.1: Field types from SharePoint and their counterparts from the OWL 2
specification.

32

4.3. Working with Ontologies

different techniques are implemented in SharePoint. The first example shows
the storage of ontologies in SharePoint. The second and the third example show
how to work with ontologies based on the two methods class instantiation and
list from ontology as presented in section 4.2.

4.3.1 Ontology Storage

Since the list is the most natural way of storing files and other information in
SharePoint, the ontologies are stored in a dedicated list. Apart from the raw
XML data of the OWL file the list also stores some meta information about the
ontology such as its name and its description. This information is read from
the ontologies annotation properties. When accessing the ontology it is parsed
from the XML data and made accessible via the OWL API for .Net.
This way of storing the ontologies in a separated part of the SharePoint reposi-
tory also allows to keep track of changes or updates of ontologies. Two ontologies
with the same URI can be compared and, if only minor changes are present, can
be updated. This update can also include the already created lists, property
fields and taxonomy store entries. This allows the users to gradually update
the stored ontologies as changes occur. This update process may already need
some reasoning to match the instances tagged in the old version of the ontology
to the new version as it will be addressed in chapter 5.

4.3.2 Instantiation

After the ontology is uploaded the user can decide to either create a SharePoint
taxonomy from the ontology or create a list to store files. The first choice will
immediately create the taxonomy and make it available as a field that can be
manually added to an existing list whereas the latter will prompt the user to
specify the properties that shall be added to the list. An example of the user
interface for instantiating an ontology from within SharePoint is given in figure
4.2. An example of a resulting list is displayed in figure 4.3.

Type Property

Apart from the properties specified in the OWL file, the user may also chose
to add the rdf:label property and the rdf:type relation to explicitly specify the
class of an item. The rdf:type relation will then also create the taxonomy in the
same manner as the class instantiation method would do.

Data and Object Properties

All other properties will be created as a custom field. For data properties the
user may directly enter the desired values that will be range checked based on
the type conversion in table 4.1. If the range check fails, the changes will not
be saved in the SharePoint database.
In contrast to the data properties the object properties range is depending on
the items already in the list: The rdf:type property may assign a class to another

33

4. Design of the Semantic Repository

Figure 4.2: Screenshot of the user interface created to instantiate an ontology within
SharePoint. Shows the data and object properties that can be instantiated from
the Dublin Core Metadata Set (left and middle column). Also shows an option to
instantiate the type of relation (right column).

Figure 4.3: Screenshot of the list created by the ontology initiator. The list was
populated with some example files which also define some of the properties from
the ontology.

34

4.4. Retrieval of Tagged Data

instance. This, in turn, may add the other instance as a possible candidate for
an object property. Based on a custom field a lookup field was created that
allows to edit this kind of property by selecting the target instance, see figure
4.4.

4.3.3 Export

Once items are stored in the repository they are regarded as individuals be-
longing to some ontology. Therefore the export feature allows to get the OWL
representation not only for the ontology but also for the contents of the repos-
itory. The resulting XML file can then be loaded into other software products
to work with the contents of the repository.

A more detailed approach of how to use this representation is described in
section 4.5.

4.4 Retrieval of Tagged Data

The retrieval of data is one of the most important functions that the different
research groups developing Projekt Repository want to use. The most basic way
of finding information within a large set of data is search.

Search usually defines a query as a string or some other human enterable rep-
resentation. The search then leads to a set of items matching the query. In the
following sections three different ways of defining a query in Projekt Repository
will be presented: the full text query searches through the labels of all fields of
the data stored, the field query restricts the full text query to single fields and
the query by OWL class lets the user specify the query as an OWL class.

Figure 4.4: Screenshot of the object property field in SharePoint. The field can be
used to define object properties respecting their domain.

35

4. Design of the Semantic Repository

4.4.1 Full Text Query

A full text query is the most basic type of query that can be used for search.
It will simply return all the elements that have the query term present in one
of their fields. In case multiple terms are given only elements having both of
them in one field will be retrieved thus a query term cannot be formulated to
be split over the different fields of an element. However this process itself is
widely supported by SharePoint but has another clear disadvantage: since all
the fields have to be processed this type of search is usually quite slow or requires
sophisticated indexing strategies to speed up the process.

4.4.2 Field Based Query

In contrast to the full text query the field based query is restricted to some field
of interest. The amount of computing time needed to search through the items is
reduced as only certain explicitly defined parts of the data need to be searched.
This type of query is the first to take some advantage from the information of
the ontologies.

As [37] suggests taxonomies are ideal as a basic structure that helps the user
to formulate a query. Of course such information can also be obtained from
ontologies as they offer a restriction on the values of certain fields. For this
application, the most interesting restriction is the limitation to a small set of
values for a certain field. Apart from search using a query term, this allows the
system to suggest potential values of the field that can be selected by the user.
This process is called filtering or faceted search. It allows the user to quickly
change the restrictions on the items currently displayed by defining a very clear
query.

Based on the examples from [38] and the techniques already offered by Share-
Point itself an interface was created to allow the user to explore the data by
filtering for certain values. It uses information about the type of the field from
the ontology. Figure 4.5 shows screen shots of different interfaces that were
implemented.

4.4.3 Query by Class Definition

The most powerful type of query is the query by class definition. This feature
allows the user to specify a class definition in OWL or in SPARQL, a recursive
acronym for SPARQL Protocol And RDF Query Language. It is a query lan-
guage specifically designed to place queries to ontologies. Also SPARQL is a
recommendation of the W3C [39]. However both ways of formulating the query
need some reasoning capabilities to find the matching entities.

Nevertheless this type of query requires the user to know the query language.
As the prospective users of Projekt Repository will usually have no computer
science background, this query will most likely not be used directly for the
project nor be accessible from the SharePoint front end.

36

4.5. OWL Representation

Figure 4.5: Different search facets generated by SharePoint.

4.5 OWL Representation

The OWL representation of a repository exports the contents of a repository,
the metadata and its structure as an OWL file. This file can then be read
directly by other tools dealing with ontologies, such as Protégé or other software
agents, such as semantic search engines like Watson or Swoogle [40, 41]. As the
export capability gives other agents the capability to access the contents of the
repository it is a valuable tool to build multiple linked repositories which is a
feature that is be considered for the future development of Projekt Repository.

4.5.1 Representation of Files Stored in the Repository

As described in section 4.2 there are two ways of dealing with the data from
ontologies: class instantiation with files from a list and creation of a list structure
based on the relations in the ontology. Nevertheless both of these ways regard
one file as an instance, having properties that relate that instance to other
instances or values of some data type. As already explained in section 2.2.1
these relations can be expressed by an ontology.
Since OWL is the representational language of choice for the project each of the
files stored in the repository are represented as an owl:NamedIndividual. The
URI, which is also the ID of the named individuals, is chosen from the URL of
the file within the SharePoint repository. This connects the actual file and the
exported metadata.
Furthermore this allows the export of the metadata to be independent of the
actual access rights of the file itself. This preservation of access rights is espe-
cially important as access to the files stored in the repository may be restricted
by legal or copyright issues and therefore permission to access the data itself
may only be granted upon request or even payment. Still this approach makes
it possible to publish and retrieve files based on their metadata. If a repository

37

4. Design of the Semantic Repository

contains a file that is interesting access rights for a specific file can be granted
from the copyright holder or owner of the repository.

4.5.2 REST Web Service

As the data and metadata stored in the repository are subject to constant change
it is important that the representation is always up to date. That is why the
ontology representation of a repository is implemented as a REST service.
REST, Representational State Transfer, is a programming paradigm originally
introduced by [42]. It describes a way to implement a web service that can
be queried by computer programs as well as human users. REST itself does
not define a concrete protocol but is usually implemented on top of the HTTP
protocol which in turn is probably the most commonly used technology of the
world wide web.
The concrete implementation of the REST service offers a URL for each reposi-
tory that, when accessed via HTTP GET, returns the contents of the repository
in OWL representation. The information is directly generated from the contents
of the repository so that the user or software accessing the service will always
receive the most recent state of the repository. Figure 4.6 gives an impression
of the exported contend of the SharePoint list previously shown.
Apart from the information about the instances the web service also transmits
the ontologies used to tag the metadata. Thus the OWL representation itself
completely defines the ontology that is needed for an external observer to un-
derstand the information from the object and data properties of the individuals.
This export can then be fed into the search index of the semantic web search
engines.

38

4.5. OWL Representation

Figure 4.6: Screenshot of the OWL XML export of the repository contents as seen
in figure 4.3

39

Chapter 5

Ontology Matching

The central problem that is dealt with in this chapter is the matching of two
different ontologies. This problem arises due to the fact that it is possible to
define multiple ontologies for a single domain and it especially occurs when two
research groups independently built an ontology or if an ontology changes over
time. Especially the latter can occur if the repository is used for long time
storage and needs to be accessed years after the actual project was finished. To
automatically retrieve data using a query defined in one ontology it is necessary
to find an alignment that connects the two ontologies.

This chapter will first introduce the ontology alignment problem in general.
Then several statistical measures that are be used to measure structural prop-
erties of classes of ontologies are presented in the second section. In the last
section an approach will be proposed that performs an ontology alignment based
on the presented measures.

5.1 The Ontology Alignment Problem

Before proposing an algorithm to perform an ontology alignment the general
process of ontology alignment is defined:

The goal of the alignment process is to produce a mapping A from an ontology
o1 to an ontology o2. In general every entity in the ontologies might be matched.
For a pair of entities e1 from o1 and e2 from o2 the mapping A determines if
they match.

In general A can determine all kinds of relations among the entities such as
equality, hierarchies or partial overlap or every other relation that can be ex-
pressed by an ontology. However for practical reasons in the following descrip-
tion will focus on defining the alignment problem for exactly matching classes.
[43] defines the alignment problem for more general cases.

Definition 5.1. For an alignment A of two ontologies o1 and o2 an alignment
function f is defined such that for every class c1 from o1 and some class c2 from
o2:

41

5. Ontology Matching

f(c1) =
{
c2 if A exactly maps c1 to c2
⊥ otherwise (5.1)

The process of creating the alignment A can be based on several resources and
parameters and thus is not unique in any way. However a reference alignment
can be created which gives the correct mapping of the classes. For evaluation
purposes this is done manually using domain knowledge.

5.1.1 Ontology Alignment Evaluation Initiative

To evaluate different matching techniques the Ontology Alignment Evaluation
Initiative (OAEI) [44] offers an annual evaluation event where multiple ap-
proaches for matching ontologies are compared using different ontologies. The
programs submitted during the last years mostly focussed on alignment by using
the labels of the classes and properties and used structural measures mainly for
partitioning [45] the ontology. With these approaches good results have already
been achieved [45, 46].
Furthermore the OAEI offers a hub where papers describing the different match-
ing approaches can be found. These papers work as a good start to gather
information about current state of the art ontology matching techniques.

5.1.2 Matching Techniques

The similarity measures performed for the matching are divided into four classes
by [45]: terminological, extensional, semantic and structural. Table 5.1 gives a
short overview over the different approaches.
The terminological algorithms aim at matching the ontologies based on the
labels or comments given in the ontology. For this purpose they use different
proximity measures on strings such as n-gram or the edit-distance. A more
advanced way of string matching can be performed when using a thesaurus

Type Operates on Sample algorithms

Terminological strings, labels,
comments

n-gram,
edit/Levenshtein
distance, WordNet

Extensional (common) instances Naïve Bayes, object
(dis)similarity

Semantic logical structure rule-based or fuzzy
inference

Structural relational structure,
hierarchies

graph similarity,
structural proximities,
descendant and sibling

similarities

Table 5.1: Comparison of different approaches to match ontologies

42

5.2. Structure Based Measures

to match synonyms. Instead of labels the extensional approach depends on
instances that can be found in both ontologies. Based on this information data
mining techniques can be used to find a similarity measure.
In contrast to the two content based approaches the semantic and the structural
approach only use the information present in the pure ontology definition. A
semantic reasoner may construct a model of the ontology and then match the
model using a rule based or fuzzy logic approach. This step of semantic verifi-
cation is often carried out as a separate process that requires user interaction
to verify some of the matchings.
Finally the structural approach will only use the structures presented in the
ontology. These structures can come from two sources: the class hierarchy and
the relational structure presented by the different object properties. This class
of algorithms makes use of measures for graph similarity which are also widely
used in other disciplines in computer science such as computer vision and social
network analysis [47, 48, 49, 50].

5.2 Structure Based Measures

In this section structure based measures will be closer examined. This section
will first introduce the measures used to describe structural properties of the
ontologies. The next section will focus on how these measures are used to match
the entities of an ontology.
From the ontology a graph representation is constructed on which the structural
measures then operate on. Originally some of the presented measures, centrality
and modularity, are used for structural description of graphs and were neither
designed for matching graph nodes nor ontologies.

5.2.1 Adjacency Matrix

To retrieve a graph from the definition of the ontology an adjacency matrix Ax

is proposed where x denotes the object property that is used as the source for
the graph. In this graph the classes of the ontology are used as a node. Classes
connected by the property are transferred to nodes connected by an edge in the
graph.

Definition 5.2. To define an adjacency matrix Ax based on an ontology o and
an object property x ∈ R the following steps are performed:
Without the loss of generality it is assumed that for every c ∈ C there exists a
bijective mapping I to an index such that I : c→ N. Furthermore this mapping
has an inverse mapping I−1 : N→ c.
The adjacency matrix Ax is then defined as follows:

Aij
x =

{
1 if i 6= j and o |= (α, β) : x for all α : I−1(i), β : I−1(j)
0 otherwise (5.2)

The definition above assembles Ax so the corresponding graph is directed and
unweighted. Using this graph several statistical measures such as the number

43

5. Ontology Matching

of neighbours can be used to determine its properties. The ontology matching
algorithm will make use of these properties to match the graphs and therefore
the classes of the ontology. In the same manner an adjacency matrix AsubClass

is proposed based on the class hierarchy which leads to definition 5.3.

Definition 5.3. To define an adjacency matrix AsubClass based on an ontology
o the following steps are performed:
Again the mapping from definition 5.2 is used to map classes to indexes of the
matrix. The adjacency matrix Ax is then defined as follows:

Aij
subClass =

{
1 if i 6= j and o |= I−1(i) v I−1(j)
0 otherwise (5.3)

Since the graph of AsubClass is also directed and unweighted, AsubClass is re-
garded as a special case of Ax. Nevertheless since it has the same properties the
following techniques will only be discussed for an arbitrary Ax which may also
be AsubClass.

5.2.2 Direct Neighbours

Using the definition of the graph of the ontology a direct neighbourhood of one
class can be defined as the direct neighbourhood of the corresponding node in
the graph. In [51] the definition of direct neighbours was successfully used for
graph matching.

Definition 5.4. Given an adjacency matrix Ax and a class c from an ontology,
the direct ancestors D of the class c are defined as the classes whose nodes in
the graph have a common edge with c. Again the mapping I from definition 5.2
is used:

Dc = {c′ ∈ C|AI(c),I(c′)
x = 1} (5.4)

As a measure based on the direct neighbourhood the number of successors and
the relative number of successors is defined.

Definition 5.5. Given an adjacency matrix Ax and a class c from an ontology
and the mapping I from definition 5.2 the number of successors of a class c is
defined as follows:

kc = |Dc| =
∑

j

AI(c),j
x (5.5)

Furthermore the relative number of successors is determined as follows:

krel
c = kc

maxc′ kc′
(5.6)

5.2.3 Extended Neighbourhood

Apart from the direct neighbours as defined in [51] a notion of the extended
neighbourhood is proposed. The extended neighbourhood consists of all the

44

5.2. Structure Based Measures

classes that can be reached by any path from a given class c. Within this ex-
tended neighbourhood two kinds of classes are especially important: the classes
that have no successors (leafs, sinks) and the classes that are not a successor of
any other class (roots, sources).

Definition 5.6. Given an adjacency matrix Ax and a class c from an ontology
and the mapping I from definition 5.2 a sink is defined as follows:

c is a sink iff kc = 0 (5.7)

Definition 5.7. Given an adjacency matrix Ax and a class c from an ontology
and the mapping I from definition 5.2 a source is defined as follows:

c is a source iff ∀c′AI(c),I(c′)
x = 0 (5.8)

which is equivalent to:

c is a source iff
∑

i

Ai,I(c)=0
x (5.9)

For a measure of the structure of the extended neighbourhood the number of
sinks sc is counted. Furthermore the relative number of sinks srel

c is defined
equivalently to definition 5.5.

5.2.4 Centrality

While the neighbourhood measures determine properties of single nodes in con-
trast to their direct successors the centrality measure assigns values relative to
all the other nodes in the network. The notion of centrality is based on the
centrality measure presented in [52] which in turn is based on the PageRank
algorithm from [53].
The centrality measure uses a random walk model to determine classes that
are referred most often which leads to definition 5.8. The underlying model
assumes that one node is first randomly chosen. Then based on the of outgoing
edges of the chosen node the probability is calculated that one of the connected
nodes is chosen randomly. If there are no outgoing edges again another random
node is chosen. This process is repeated until the probabilities of being chosen
converge. Apart from the described iterative process [53] shows that the given
probabilities can also be determined by the biggest eigenvector of the adjacency
matrix.
After all the of centrality of a class provides a measurement of how likely it is
for all other classes to be in a relation with the given class.

Definition 5.8. Given an adjacency matrix Ax from an ontology and the map-
ping I from definition 5.2 the centrality vector v is defined as follows:
Let V be the eigenvectors of Ax. Furthermore assume the eigenvectors vi in V

45

5. Ontology Matching

are ordered according to the absolute value of the corresponding eigenvalue λi

such that λ1 ≥ λ2 ≥ · · · ≥ λn. Then the centrality vector of Ax is defined as
v = v1.
The centrality zc of a class c of an ontology is then defined as: zc = vI(c) = v

I(c)
1 .

Definition 5.9. Given the centrality zc of a class c of an ontology a relative
centrality is defined as follows:

zrel
c = zc

maxc′ zc′
(5.10)

5.2.5 Modularity

The modularity measure is based on the modularity algorithm in [52]. It deter-
mines the partitions the graph can be divided into by separating as few succes-
sor nodes as possible. Apparently [52] defines modularity only for undirected
graphs. Nevertheless modularity respects connected nodes in general which
suggests that the directed graph of the ontology is converted into a undirected
graph.

Definition 5.10. The adjacency matrix A′x of the undirected graph G′ for the
directed graph G is defined as follows:

A′x = Ax +AT
x (5.11)

To fully define the modularity measure an intermediate matrix has to be defined.

Definition 5.11. Given an adjacency matrix A′x and two classes c, c′ from an
ontology and the mapping I from definition 5.2 the expected number of relations
with another class is calculated:

P I(c),I(c′)
x = kckc′∑

ij A
′ij
x

(5.12)

The expected number of relations among two classes forms a model of the graph.
The expectancy matrix Px determines how likely it is that an edge is encountered
among two nodes of the graph. This model is the basis for calculating the
modularity of the graph.

Definition 5.12. Given an adjacency matrix A′x and the matrix of expected
edges among the nodes of the graph Px we can define the modularity matrix
Bx as:

Bx = A′x − Px (5.13)

Using this modularity matrix we can now define a modularity value for each
node determining two (or more) clusters of nodes. Nodes within the clusters
are highly connected whereas there are as few connections as possible to nodes
outside of the cluster. Apparently the exact solution is NP-hard, nevertheless
[52] proposes an approximation method:

46

5.3. Structure Based Matching Algorithm

Definition 5.13. Given a modularity matrix Bx from an ontology and the
mapping I from definition 5.2 the centrality vector v is defined as follows:
Let U be the eigenvectors of Bx. Furthermore assume the eigenvectors ui in U
are ordered according to the absolute value of the corresponding eigenvalue βi

such that β1 ≥ β2 ≥ · · · ≥ βn. Then the modularity vector of Bx is defined as
u = u1.
The modularity mc of a class c of an ontology is then defined as: mc = |uI(c)|.

As done with the measures before also a relative modularity is defined:

Definition 5.14. Given the modularity mc of a class c of an ontology the rel-
ative modularity is defined as follows:

mrel
c = mc

maxc′ mc′
(5.14)

5.3 Structure Based Matching Algorithm

In this section a framework that uses the different presented measures to align
two ontologies is proposed. Several variations of the proposed framework were
implemented and then evaluated against the test sets of the OAEI in section
6. The presented structural measures are not designed to do graph or ontology
matching with them. However the structural matching algorithm assumes that
matching classes in the ontologies will have similar structural properties. This
is used by the alignment algorithm proposed in this thesis.

5.3.1 Prerequisites

The proposed matching algorithm makes heavy use of the measures presented in
definitions 5.5, 5.6, 5.9 and 5.14. To compensate for different sizes of the ontolo-
gies the relative measures are used. Apparently the relative measures cannot
compensate big differences in size of the ontologies to be matched. Therefore
the matching algorithm makes several assumptions:

The ontologies have about the same size. As already mentioned this re-
quirement is based on the dependency of the presented measures on the
graph size.

The ontologies deal with the same topic. Since the algorithm compares
only structural measures ontologies with only a small overlap will not
be aligned correctly — especially if the non-overlapping classes provide
roughly the same structure it will lead to an incorrect alignment.

The ontologies have approximately the same granularity. If one of the
ontologies models many details in a complex hierarchy whereas the other
models the classes in a list the structure of the ontologies obviously cannot
be matched.

47

5. Ontology Matching

The classes of the ontologies have a 1:1 matching or no match. The al-
gorithm assumes that either two classes match or do not match. While a
sub-graph to class mapping is quite realistic this option is not considered
by the algorithm.

5.3.2 Alignment Algorithm

To perform the alignment of the ontologies the algorithm performs several steps
on the classes of both ontologies:

1. For every class from o1 and o2 a value vector nc = (krel
c , srel

c , zrel
c ,mrel

c)T

is calculated. This vector is the basis for the matching process.

2. The algorithm generates a possible alignment.

3. (Optional) The alignment is checked for consistency. This step only allows
alignments that meet a consistency rule:
If two classes c1 from o1, c2 from o2 are aligned any successor class c′1 v c1
may only be aligned with c′2 if c′2 v c2.

4. Then for every pair of classes c1 from o1, c2 from o2 in the alignment a
distance d(c1, c2) is calculated. This distance is based on the value vectors
nc1 and nc1 . The actual distance measure may be varied.

5. The quality of the alignment is based on the accumulated distance. As
with the distance function itself the accumulation function may be varied.

6. (Optional) Perform local search and select an alignment from the neigh-
bourhood of the current alignment. Continue at step 2 until the accu-
mulated distance reaches a certain threshold or a maximum number of
iterations is reached.

7. The algorithm returns the best alignment that was found according to the
distance and accumulation function.

From the description of the algorithm it gets quite clear that there are many
varieties that will inflict its performance. The main fields that should be con-
sidered are:

The distance measure. The distance measure is crucial for the solution to be
found by the search algorithms. The distance measure for this special case
can be any function d : R4 × R4 → R. By convention distance functions
should also meet the additional requirements such as d(a, b) = 0 iff a = b
and d(a, b) > 0 iff a 6= b.

The accumulation function. Since the distance function only judges the qual-
ity of a matched pair of nodes, the accumulation function needs to accu-
mulate the distances of the node pairs to generate a notion of quality
for the complete alignment. The accumulation function can be any func-
tion s : Rmax(|C1|,|C2|) → R where C1 and C2 are the sets of classes from
ontology o1 or o2 respectively. Again the accumulation function should
follow the convention that for two alignments a, b s(a, b) = 0 iff a = b and
s(a, b) > 0 iff a 6= b

48

5.3. Structure Based Matching Algorithm

The generation of a neighbourhood of alignments. For local optimization
it is crucial that based on one alignment it is possible to generate neigh-
bouring alignments which in turn can be inspected for their quality.

The technique used to (repetitively) generate alignments. This task can
be performed by multiple search techniques. These approaches usually
include the necessity to search in the alignments neighbourhood for align-
ments with a better accumulated distance.

5.3.3 Implementation

For the realization of the alignment algorithm the three modules mentioned in
the previous section have to be implemented. For this thesis the selection is
mainly motivated by some core characteristics of the ontologies:

• Ontologies are likely to differ in size. The measures used should compen-
sate this.

• Ontologies are likely to have several thousand classes leading to combina-
torial explosion.

Distance Measure

In general information retrieval tasks the cosine similarity is commonly used to
measure similarity between vectors. Cosine similarity c of two vectors v and u
is defined ad follows:

c = v · u
‖u‖‖v‖

(5.15)

Cosine similarity has two desirable properties: It is robust against vectors of
different length as the distance is based on the angle between the vectors and
it has a fixed range from −1 to 1. Since all similarity measures are positive
c ∈ [0, 1]. To convert the cosine similarity to a distance d the formula d = 1− c
can be used.

Accumulation

The accumulation is done simply by adding the distances. Alignments with a
smaller sum of distances will be preferred by the alignment algorithms.

Alignment generation

For alignment generation best-first-search is used. Even though in general any-
thing but the first choice this approach is fast and therefore generates alignments
of large ontologies in reasonable time. Nevertheless it is very likely to find only
local optima, the general tendency is good enough to evaluate the quality of the
presented similarity measures.

49

5. Ontology Matching

As a first extension to the best-first-search algorithm tabu search is used. Tabu
search is a local search strategy that can be used to improve the results from
best-first-search. To improve the result x from the result set X tabu search
needs a function S(u) ⊂ X giving the neighbours of a solution u. Tabu search
furthermore maintains a tabu list T of solutions already visited. The function
C gives the costs of a certain solution, whereas optimum gives the best solution
from a set of solutions. The basic tabu search algorithm can is described by
[54, 55] in the following way:

1. Select an initial x ∈ X and let x∗ := x. Set the iteration counter k = 0
and begin with T = empty.

2. If S(x) − T is empty, go to Step 4. Otherwise, set k := k + 1 and select
sk ∈ S(x)− T such that sk(x) = optimum(s(x) : s ∈ S(x)− T) .

3. Let x := sk(x). If C(x) < c(x∗) , where x∗ denotes the best solution
currently found, let x∗ := x.

4. If a chosen number of iterations has elapsed either in total or since x∗ was
last improved, or if S(x) − T = 0 upon reaching this step directly from
Step 2, stop. Otherwise, update T (as subsequently identified) and return
to step 2.

To use tabu search for ontology alignment the elementsX, S(u) and C need to be
properly defined. T , optimum and x then follow directly from these definitions.
X is the set of all possible alignments whereas x ∈ X is the alignment found
by best-first-search. C is the distance based on the distance measure used for
the alignment. The optimum-function will then select the alignment with the
lowest accumulated distance. Finally S(u) is defined by every alignment that
can be reached by pairwise swapping of two aligned classes.
The second extension to the best-first-search is simulated annealing [56] which
is also used for optimization of solutions generated by the best-first-search.
Simulated annealing also is a local search algorithm that tries to enhance the
given result by examination of single elements of the neighbourhood of the
current solution x ∈ X. Based on a solution u simulated annealing needs to
generate a sequence of neighbouring elements sk(u) ∈ X, k ∈ N. Furthermore
the solutions are again evaluated using a quality measure C which again is based
on the distance measure used. A function P gives an acceptance probability for
the neighbouring solution. This probability depends on the quality of the current
solution C(u), the quality of the current neighbour C(sn(u)) and a temperature
t that is lowered slowly during the process. Simulated annealing then performs
the following steps:

1. Select an initial x ∈ X and let x∗ := x. Set the iteration counter k = 0
and begin with t = tmax.

2. Calculate e = C(x) and e′ = C(sn(x)) for some n ∈ N

3. With probability P (e, e′, t) set x = sn(x). If C(x) < C(x∗) set x∗ = x

4. If t = 0 stop. Otherwise, decrease t and return to step 2.

50

5.3. Structure Based Matching Algorithm

For the implementation of simulated annealing the function P was imeplemented
such that:

P (e, e′, t) =
{

1 if e′ < e

exp(e−e′

t) otherwise (5.16)

Neighbourhood

To search for local optimizations the alignments within a neighbourhood of a
given alignment need to be evaluated. To generate the neighbouring alignments
the aligned classes are swapped pairwise. Given the alignment below

f(c1
1) = c1

2, f(c2
1) = c2

2, f(c3
1) = c3

2 (5.17)

its neighbourhood consists of three other alignments and can be generated as

f(c1
1) = c2

2, f(c2
1) = c1

2, f(c3
1) = c3

2 (5.18)
f(c1

1) = c3
2, f(c2

1) = c2
2, f(c3

1) = c1
2 (5.19)

f(c1
1) = c1

2, f(c2
1) = c3

2, f(c3
1) = c2

2 (5.20)

Additionally to the plain swapping a consistency requirement can be placed on
the validity of the neighbouring alignments: If two classes c1 from o1, c2 from
o2 are aligned any successor class c′1 v c1 may only be aligned with c′2 if c′2 v c2.
However this consistency requirement will most often be violated by swapping
classes. It is therefore necessary to extend the notion of the neighbourhood such
that every successor class of the swapped classes will be realigned in a consistent
way. In the implementation tested this realignment is done by performing a
constant best-first-search on the successor classes.

51

Chapter 6

Experiments

In this section the previously described structures will be evaluated based on
several experiments. The experiments were performed in three settings: At
first the product was tested in a workshop together with the researchers of the
other projects. Then the results of an ontology conversion from XML Schema to
OWL are presented. The third test considers the matching algorithm described
in chapter 5.

6.1 Workshop

To gain insight into the application of the Semantic Repository when used by the
researchers of the different disciplines participating in Projekt Repository work-
shops were organized to test the software. In these workshops the researchers
got to work with the product and had to comment on their impressions.

This first evaluation is based on the qualitative feedback obtained from the
workshops. They were thematically focussed on creation and import of the
ontologies as well as creating a repository structure from the ontology and finally
the steps needed to store and tag data. The researchers were explicitly asked to
give their feedback on how they think the Semantic Repository can be used for
daily research activities. These workshops itself gave some valuable input on
how to further improve the product. Figure 6.1 gives an overview of the testing
process.

6.1.1 Workshop Activities

At first an ontology from the ones listed in section 2.3 was selected based on
the discipline of the researcher. If for some reason the research group has no
ontology previously defined a custom ontology is defined (1). The ontology
was then reviewed using Protégé before being uploaded into Projekt Repository
(2,3). Using the ontology, the two methods, class instantiation and list creation
from ontology (see section 4.2) were used to add the semantic information to
the repository (4,5). Last but not least several files were uploaded and tagged

53

6. Experiments

Load ontology into
Protégé to review

[ontology not available in OWL]

Create OWL ontology based on
Structure given by researcher

Upload of ontology into
SharePoint Repository

Create one or more Tables with
the classs instantiation property

Create one or more Tables with
other properties from the ontology

upload several files to the repository
and edit the generated properties

(1) (3)

(2)

(4)

(5)

(6)

Figure 6.1: Activity diagram for the different action performed with the other re-
searchers during the workshop. During all of the steps the comments were recorded.

within the repository to gain experience with the work-flow that will be mainly
performed when working with Projekt Repository during research projects.

6.1.2 Workshop Evaluation

To gather the results and opinions of the researchers during the workshop two
approaches were used: the Think-Aloud method during the activities and tar-
geted questioning after the activities were finished. The Think-Aloud method is
a securely established method for software testing and user interface design [57]
that demands the users of the system to speak out loud what they think when
using the system. Common phrases heard during this method are for instance:

• I want to save the file so I click on the button that has the disk icon on it

• I am doing a right click on this entry to open the context menu but it does
not open

The targeted questions asked after the activities were focussed on the daily
application of the Semantic Repository to store research data:

• Compared to your current storage technique how well does the program
integrate in your work-flow?

• What was the most interesting feature encountered during the workshop?

• What would you change to make the program fit your needs better?

The evaluation of the workshop can obviously only be done on qualitative basis.
There were several key points mentioned by the researchers which raised many
ideas for enhancements of the product:

Protégé does not integrate well with the process Most of the researchers
found it annoying to switch from the web based repository to a desktop
application, or even have to install this application. This is not only a
media disruption but also conflicts with the goal of the project to offer
low-threshold access to the repository and its features. However the spec-
ification of the ontology and therefore the structure of the repository are
usually only specified at in the beginning of a project.

54

6.2. Ontology Conversion

OWL Export is interesting for round trip engineering The export fea-
ture was found quite useful not only for making the data accessible from
outside of the SharePoint repository but also as a round trip engineer-
ing feature. An exported ontology is then loaded into a second repository.
This allows tagging and referring of data across different repositories. The
goal of a cross-linked repository was also already mentioned in the initial
proposal for Projekt Repository. This feature of the Semantic Repository
was regarded as an initial step for its realization.

The tagging process is intuitive and time efficient This is probably the
most important feature that was noticed during the workshop. The im-
pression of the whole tagging process was that is does not interfere with
the research tasks of the users. This is quite important as the project can
only be successful if it is used by the researchers to tag, store and work
with their data.

6.2 Ontology Conversion

In this section some considerations about the conversion from XML Schema
to OWL are presented. To explain some of the phenomena an example from
the LIDO metadata schema is presented. The considerations are mostly based
on the way LIDO is structured, these structures are converted to OWL which
in turn is interpreted by the SharePoint extension. They are therefore not of
general nature but rather specific for the Semantic Repository.

In figure 6.2 the general structure of LIDO is presented to be formed by Wraps
which in turn are formed of Sets. Thus multiple measurements, e.g. of the
physical dimensions of an object, are arranged in a MeasurementSet. These
measurements are tied to the object which contains the MeasurementWrap, that
contains the actual MeasurementSets.

In general this is a valid approach for structuring metadata. Using the conver-
sion presented in section 2.3.3 each of the Wraps and Sets will be converted into
a Class in the ontology. Additionally object properties will be generated to link
the object and its metadata. For the example given in figure 6.2 the following
TBox will be created:

T = {LidoObject v ∃hasMeasurementWrap.MeasurementWrap,

MeasurementWrap v ∃hasMeasurementSet.MeasurmentSet,

MeasurementSet v ∃hasMeasurement.Measurement,

Measurement v (∃hasV alue.>) u (∃hasUnit.>) u (∃hasType.>)}
(6.1)

55

6. Experiments

Figure 6.2: General structure of the LIDO metadata schema. Source: [58]

To fully model the example given in figure 6.2 various objects need to be defined
in the ABox:

A = {w : MeasurementWrap,

s : MeasurementSet,

mH : Measurement,

mW : Measurement,

l : LidoObject,
(l, w) : hasMeasurementWrap,

(w, s) : hasMeasurementSet,

(s,mH) : hasMeasurement,

(s,mB) : hasMeasurement,

(mH , 44.3) : hasV alue
(mH , ”cm”) : hasUnit,
(mH , Height) : hasType,
(mB , 35.5) : hasV alue,
(mB , ”cm”) : hasUnit,
(mB ,Width) : hasType} (6.2)

While this again is completely valid and has the advantage that an OWL doc-
ument generated using the converted schema is likely to be syntactically com-
patible with the original schema, since OWL can express anonymous objects, a
problem arises when using the converted schema as an ontology in the Semantic
Repository. All the intermediate objects have to be created as a list item by the

56

6.3. Ontology Matching

user of the product. This is a protracted process especially due to the fact that
the Measurement objects will most likely be used only once and therefore have
to be created for every tagged object. This behaviour is quite inconvenient but
could be improved by the detection of these intermediate objects. However this
issue was out of the scope of the Semantic Repository.

6.3 Ontology Matching

To evaluate the matching process several experiments based on two of the
datasets of the Ontology Alignment Evaluation Initiative were carried out. The
experiments were then evaluated against the reference alignment given for the
datasets.

6.3.1 Evaluation Measures

Even though the reference alignment can be used to automatically evaluate the
performance of an alignment algorithm based on the number of direct matches,
for the structural matching process this type of direct evaluation was not ex-
pressive as it did not allow giving a proximity how far the alignment of a class
missed the actual class. Therefore the direct matching evaluation was extended
to a measure that respects the distance between the proposed alignment and
the reference alignment.
In accordance to the definitions in section 5.2 a proximity matrix Px is defined.
This proximity matrix is defined as follows:

Definition 6.1. The Proximity matrix Px of a graph of an ontology is defined
such that for every two of classes c, c′ from the ontology:

P I(c),I(c′)
x = min

c′′∈Nc

P I(c′′),I(c′)
x + 1 (6.3)

with Nc =
{
c′′ ∈ C|A′I(c),I(c′′)

x 6= 0
}

(6.4)

This recursive definition can be informally expressed as P I(c),I(c′)
x and it denotes

the length of the shortest path between the class c and c′ in the graph of the
ontology.
In contrast to a simple comparison to the reference alignment, the distance
based evaluation measure allows evaluating the quality of the alignment of a
single class. Consider the following example: A class ca is part of ontology A
whereas classes c1

b , c2
b and c3

b are part of ontology B. The proximity matrix of
B is given by:

PB =

 0 1 2
1 0 1
2 1 0

 (6.5)

Together with a reference alignment any other alignment differing from the
reference alignment can now be evaluated quantitatively. If c1

b is the reference
alignment for ca the following three cases can be observed:

57

6. Experiments

• If ca is matched to c1
b then the distance to the reference alignment of ca

is dca = P 1,1
B = 0

• If ca is matched to c2
b then dca

= P 1,2
B = 1

• If ca is matched to c1
b then dca = P 1,3

B = 2 respectively

Since many structural measures are almost equal for instance for sibling nodes,
this distance based evaluation is especially useful for comparing structural on-
tology matches. Nevertheless it also preserves the notion of an exact match
with the distance of 0. In general a higher measure can be regarded as a worse
match.

Precision and Recall

Based on the introduced evaluation measure it is now possible to define a more
flexible notion of precision and recall. This is especially useful since the struc-
tural matching algorithm cannot distinguish between nodes on the same level
having the same properties, especially sink nodes. To compensate for this it
is now possible to not only consider a correct match as aligned but also every
sibling node of the matching node:

Definition 6.2. Given the sub sets of classes C ′o1
⊆ Co1 from an ontology o1 and

C ′o2
⊆ Co2 and C ′′o2

⊆ Co2 from an ontology o2, a bijective alignment function
f : C ′o1

→ C ′o2
and a bijective reference alignment function g : C ′o1

→ C ′′o2
The precision measure p is defined as the fraction of relevant matches in the
alignment such that

p =
|
{
c ∈ C ′o1

|P I(f(c)),I(g(c))
o2 ≤ k

}
|

|
{
c ∈ C ′o1

|∃c′ ∈ C ′o2
, f(c) = c′

}
|

(6.6)

The recall measure r is defined in the same manner:

r =
|
{
c ∈ C ′o1

|P I(f(c)),I(g(c))
o2 ≤ k

}
|

|
{
c ∈ C ′o1

|∃c′ ∈ C ′′o2
, g(c) = c′

}
|

(6.7)

Where k can be chosen freely from N. The higher k is chosen the fuzzier the
quality measure will be. Nevertheless for k = 0 these notions of precision and
recall are compatible with the classical expressions.

Definition 6.2 can also be less formally expressed as the ratio of the number of
classes that are within k-steps to their reference class to the number of classes
in the alignment from the algorithm (precision) or to the number of classes in
the reference alignment (recall).

6.3.2 The Benchmark Dataset

The Benchmark dataset is an artificial test set that can be used to systematically
determine strengths and weaknesses of an alignment algorithm. This set of

58

6.3. Ontology Matching

33 ontologies and reference alignments is one of the datasets provided by the
OAEI. As the set is artificially generated each of the ontologies has their own
speciality against which the algorithm can then be tested. For the evaluation
of the proposed matching algorithm a subset of ontologies from the Benchmark
dataset was chosen, see table 6.1.

6.3.3 Results on the Benchmark Dataset

The results generated for the Benchmark dataset were evaluated using the eval-
uation measure and precision and recall as described in section 6.3.1. All graphs
shown in this section show only a selection of the experiments that were actually
carried out. The full set of experiments can be found in appendix C.

Evaluation of Distance Measures

The first experiment using dataset 101 is used to check the general functionality
of the alignment algorithm. Therefore the reference ontology is aligned with it-
self. The graph in figure 6.3 shows that the matching algorithm is independent
of the similarity measure used capable of matching the ontology against itself.
Since this basic requirement is met combinations of similarity measures were
tested. The results of this experiment are displayed in figure 6.4. From this
experiment it gets clear that the combination of the different measures is pos-
sible. However the true benefit of the differnt combinations of measures cannot
be seen from this example but gets clear for the other datasets.
In a second experiment the ontologies 201 and 202 were aligned with the refer-
ence ontology. Figure 6.5 gives the results for ontology 201, whereas figure 6.6
gives the results for ontology 202. These ontologies differ from 101 in a way that
all the names (201 and 202) and all the comments (202 only) were scrambled.
Furthermore the order of the classes was altered. Since the matching of the
classes is on structural basis only neither the order nor the labels should change
the result significantly. Still when compared to figure 6.4 the differences are
quite clear.

Description
101 Reference ontology. All other ontologies will be aligned

against this one.
201 Same structure as reference alignment but all names are

replaced by random strings. The order of class definition
is shuffled

202 Same as 201 but comments were removed. Again shuf-
fled differently.

221 Hierarchies are completely removed.
222 Hierarchy is flattened, some intermediate levels were re-

moved.
223 Hierarchy is extended , additional levels are introduced.

Table 6.1: Properties of some ontologies from the Benchmark Dataset.

59

6. Experiments

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

children, sinks, depth, pagerank, modularity,

Precision Recall F-measure

Figure 6.3: Results of the matching algorithm when matching the reference ontology
101 against itself using the different similarity measures.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

consistency, sinks,
depth,

consistency,
children, sinks,

depth,

consistency, depth,
pagerank,

consistency, sinks,
depth, pagerank,

consistency,
children, sinks,

depth, pagerank,

consistency,
children, modularity,

consistency,
children, sinks,

depth, modularity,

consistency,
children, pagerank,

modularity,

consistency, sinks,
depth, pagerank,

modularity,

consistency,
children, sinks,

depth, pagerank,
modularity,

Precision Recall F-measure

Figure 6.4: Results of the matching algorithm when matching the reference ontology
101 against itself using different combined similarity measures.

There are also noticeable differences between the results of 201 and 202. These
differences can be explained by the order in which the classes are processed. This
effect of different orderings will be examined closer in the following section.
Even though some results of the single measures are quite bad, the cumulation
of distance measures performs quite reasonable in both cases.
Finally the three datasets are considered that have been changed in their struc-
ture. Dataset 221 has no hierarchy at all. This lead to a total failure of the
alignment as the algorithm is dedicated to structural mapping. 222 was flat-
tened by removing a class layer from the ontology. This leads to failure all
measures that depend on the descendants of the node. The measure incorpo-
rating consistency, number of children, pagerank and modularity gives the best
but not outstanding results, see figure 6.7. The best alignment of set 223 is
even worse in quality: consistency, number of children, and modularity again
give the best but not an outstanding result, see figure 6.8. When comparing to
figure C.4, dataset 223 is the only one that performs better on average when
turning consistency off.

Evaluation of Ordering

As already mentioned above the order the classes are processed in during align-
ment plays a significant role for the outcome of the alignment. Based on the

60

6.3. Ontology Matching

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

consistency, sinks,
depth,

consistency,
children, sinks,

depth,

consistency, depth,
pagerank,

consistency, sinks,
depth, pagerank,

consistency,
children, sinks,

depth, pagerank,

consistency,
children, modularity,

consistency,
children, sinks,

depth, modularity,

consistency,
children, pagerank,

modularity,

consistency, sinks,
depth, pagerank,

modularity,

consistency,
children, sinks,

depth, pagerank,
modularity,

Precision Recall F-measure

Figure 6.5: Results of the matching algorithm when matching 101 against 201 using
different combined similarity measures.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

consistency, sinks,
depth,

consistency,
children, sinks,

depth,

consistency, depth,
pagerank,

consistency, sinks,
depth, pagerank,

consistency,
children, sinks,

depth, pagerank,

consistency,
children, modularity,

consistency,
children, sinks,

depth, modularity,

consistency,
children, pagerank,

modularity,

consistency, sinks,
depth, pagerank,

modularity,

consistency,
children, sinks,

depth, pagerank,
modularity,

Precision Recall F-measure

Figure 6.6: Results of the matching algorithm when matching 101 against 202 using
different combined similarity measures.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

consistency, sinks,
depth,

consistency,
children, sinks,

depth,

consistency, depth,
pagerank,

consistency, sinks,
depth, pagerank,

consistency,
children, sinks,

depth, pagerank,

consistency,
children, modularity,

consistency,
children, sinks,

depth, modularity,

consistency,
children, pagerank,

modularity,

consistency, sinks,
depth, pagerank,

modularity,

consistency,
children, sinks,

depth, pagerank,
modularity,

Precision Recall F-measure

Figure 6.7: Results of the matching algorithm when matching 101 against 222 using
different combined similarity measures.

61

6. Experiments

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

consistency, sinks,
depth,

consistency,
children, sinks,

depth,

consistency, depth,
pagerank,

consistency, sinks,
depth, pagerank,

consistency,
children, sinks,

depth, pagerank,

consistency,
children, modularity,

consistency,
children, sinks,

depth, modularity,

consistency,
children, pagerank,

modularity,

consistency, sinks,
depth, pagerank,

modularity,

consistency,
children, sinks,

depth, pagerank,
modularity,

Precision Recall F-measure

Figure 6.8: Results of the matching algorithm when matching 101 against 223 using
different combined similarity measures.

dataset 201 different orderings are tested for their influence on the results. Fi-
nally the insights gained are used on sets 202, 222 and 223 for verification.
Figure 6.9 shows a plot of the results using the fully combined distance mea-
sure (consistency, number of children, depth, number of sinks, pagerank and
modularity).

Looking at the results the influence of the ordering shows a tremendous effect.
However the ordering by pagerank seems to be the most beneficial for the align-
ment. Figure 6.10 shows that the ordering by pagerank increases also the result
for 202 and, more importantly for dataset 222. Apparently no improvement
can be obtained for dataset 223, however the quality stays approximately at the
same level.

Evaluation of Tabu Search

Tabu search was proposed as an extension to the best-first-search used so far
in section 5.3.3. To evaluate the performance of tabu search two experiments
with a different number of iterations were carried out on the datasets. The first
experiment performs only one iteration and thus only searches the direct neigh-
bourhood of the first solution whereas the second approach does ten iterations.

Figure 6.11 shows the results when using a combination of the distance measures
consistency, number of sinks, depth, pagerank. Especially for the datasets 222
and 223 it is very beneficial to use tabu search to enhance the result. However
the other, already quite well aligned datasets do not profit much from the tabu
search.

As a reference the results of the fully combined distance measure in combination
with tabu search are given in figure 6.12. However these results show that tabu
search is not always beneficial — in the case of dataset 223 the overall quality
even decreases. In this example the fully combined distance measure obviously
does not reflect the actual alignment correctly. However this can also be guessed
by the first results for this measure in figure 6.8.

62

6.3. Ontology Matching

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

none children sinks depth pagerank modularity

Precision Recall F-measure

Figure 6.9: Results of the matching algorithm using when matching 101 against
201 using the different ordering of the classes. Before the alignment the classes
were ordered according to the given criteria.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

201 202 222 223

Precision Recall F-measure F-measure (before)

Figure 6.10: Results of the matching algorithm when matching 101 against the
given ontology using the class ordering by pagerank.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

201 202 222 223

F-measure (no Tabu) F-measure (1 Iteration) F-Measure (10 Iterations)

Figure 6.11: Results of the matching dataset 101 against the given ontology us-
ing consistency, number of sinks, depth, pagerank and tabu search with the given
number of iterations.

63

6. Experiments

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

201 202 222 223

F-measure (no Tabu) F-measure (1 Iteration) F-Measure (10 Iterations)

Figure 6.12: Results of the matching dataset 101 against the given ontology using
the fully combined distance measure and tabu search with the given number of
iterations.

Combination of Ordering and Tabu Search

Finally the combination of both techniques is examined. Compared with the
results using only ordering only slight improvements could by obtained by com-
bining both enhancements, see figure 6.13. However one slight improvement
could be noticed at dataset 223. This effect is even present using a single itera-
tion of tabu search.
Putting all the things together this combination of ordering by pagerank and
one iteration of tabu search is the most stable and most promising approach for
the different kinds of alignment problems.

Simulated Annealing

The second search technique tested is simulated annealing. Figure 6.14 depicts
the performance of the algorithm compared to the tabu search with ordering. It
is quite clear that simulated annealing is, without further optimizations, quite
close to the results that were obtained when using tabu search.

Considerations

When looking at the results one may notice that precision and recall measures
are very close together. While this is usually rather abnormal in the special
case of the considered algorithm it is the expected behaviour. The best-first-
search attempts to match as many classes as possible and is not limited by a
threshold. Therefore all classes in the ontologies will be aligned to some class.
Only if consistency checks fail for every remaining class these classes are not
aligned and therefore precision and recall deviate.

64

6.3. Ontology Matching

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

201 202 222 223

F-Measure (10 Iterations) F-Measure (1 Iteration) F-measure (no enhancement) F-measure (ordered)

Figure 6.13: Results of the matching dataset 101 against the given ontology using
the fully combined distance measure, ordering by pagerank and tabu search with
the given number of iterations.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

201 202 222 223

F-measure (Simulated Annealing) F-Measure (1 Iteration) F-measure (no enhancement) F-measure (ordered)

Figure 6.14: Results of the matching dataset 101 against the given ontology using
the fully combined distance measure and simulated annealing.

65

6. Experiments

6.3.4 The Anatomy Dataset

The Anatomy dataset consists of two ontologies. One is describing the anatomy
of an adult mouse whereas the other one describes the human anatomy. Both
ontologies describe relations among the anatomical parts, especially a part of
relation is used to describe anatomical sub parts. Both ontologies contain about
3000 classes and are therefore quite large.
Apart from the ontologies the OAEI committee provides a reference alignment
that is based on expert knowledge. This alignment is used to check the perfor-
mance of the implemented mapping algorithm.

6.3.5 Results on the Anatomy Dataset

In this section some results of the matching algorithm presented in section 5.3 are
presented. All the results shown were evaluated with the previously presented
distance based measure.

Similarity measures

In a first approach the presented similarity measures are evaluated based on
the quality of the alignment produced when only using the discussed similarity
measure for a greedy alignment. Figures 6.15, 6.16 and 6.17 show the results
using the presented evaluation method. To provide a better overview the max-
imum distance in the graphs is limited to 14. Table 6.2 gives more details on
the statistics of the results presented. These statistics are based on the com-
plete alignment. As a further reference among the results generated using the
different similarity measures a random alignment generated from the mean of
50 trials is presented in figure 6.15.
As a general tendency it can be observed that either similarity measure contracts
the distribution and shifts the mean to a smaller distance. Both properties are
desired nevertheless the effect of the single measures is quite small. To gain a
maximum effect of the different measures they need to be combined in order

Measure Min Max µ σ Min Max µ σ Σ
Random 3 18 8.0 6.7 3 24 12.3 6.4 102
Depth 1 18 8.0 3.8 1 24 9.3 5.5 216

Children 0 16 7.4 4.0 0 24 10.4 5.4 161
Sinks 0 14 6.5 2.9 0 22 8.5 5.8 89

Pagerank 0 18 8.0 3.8 0 24 9.2 5.5 203
Modularity 2 18 8.1 3.7 2 23 8.5 5.3 307

Table 6.2: Statistical measures for the distribution of the distances to the reference
alignment for the single measures. The left half of the table shows the minimum
and maximum distance as well as the mean (µ) and the standard deviation σ for
the distances in the mouse ontology whereas the right half shows the respecting
values for the human ontology. The column Σ denotes the total number of class
alignments found.

66

6.3. Ontology Matching

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mouse 0 0 0 2 6 8 9 10 7 6 7 4 4 4 4

human 0 0 0 2 8 10 8 12 15 17 14 13 16 9 13

0

5

10

15

20

25

30

o

f
cl

as
se

s

distance to reference alignment

random

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mouse 1 1 1 4 5 7 9 11 7 8 7 2 6 1 8

human 1 1 0 2 11 8 16 19 16 15 9 16 6 7 12

0

5

10

15

20

25

30

o

f
cl

as
se

s

distance to reference alignment

depth

Figure 6.15: Distance to the reference alignment in the given ontology when using
random assignments (mean over 50 trials, left) and the depth measure (right) for
the assignment.

to compensate for their individual weaknesses. However before investigating
the effects of combination of the measures some of the properties of the single
measures will be pointed out at first.

The most obvious difference of the different outcomes of the experiments is the
total number of correctly or closely aligned instances. It turns out that even
when approximately equally distributed the total number of classes which were
actually connected to the reference alignment varies greatly over the different
measures used. Figure 6.16, for example, shows the difference in the number of
classes that could be at least closely aligned quite clearly.

Figure 6.18 (left) shows the distance distribution when using all of the proposed
similarity measures. As already proposed it is quite obvious that the different
measures, when used together compensate each others weaknesses and produce
a quite reasonnable alignment. Table 6.3 provides some more detailed statistical
information for the distribution shown. What can be seen clearly is that the
number of close matches increased and also for the first time a noticeable amount
of correct matches was found.

Consistency Check

Among the different similarity measures for the classes in section 5.3 a special
consistency check was introduced. This would allow the alignment of two sub-
classes only if at least one of their superclasses were already aligned with each
other. Figure 6.18 (right) shows the distance diagram for the alignment using
all similarity measures and only allowing consistent alignments. The statistics
in table 6.4 shows the different measures for the consistent alignment according
to table 6.2.

Measures Min Max µ σ Min Max µ σ Σ
Combined 0 19 7.5 3.7 0 25 9.3 5.4 310

Table 6.3: Statistical measures for the distribution of the distances to the reference
alignment when accumulation all similarity measures.

67

6. Experiments

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mouse 2 0 2 4 5 5 5 4 9 6 4 4 3 4 1

human 2 2 2 2 5 8 14 13 3 10 7 8 4 6 8

0

5

10

15

20

25

30

o

f
cl

as
se

s

distance to reference alignment

children

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mouse 0 1 0 0 5 4 3 7 0 2 2 2 0 1 0

human 0 0 1 4 2 3 3 11 4 3 0 8 6 5 7

0

5

10

15

20

25

30

o

f
cl

as
se

s

distance to reference alignment

sinks

Figure 6.16: Distance to the reference alignment in the given ontology when using
number of children (left) or number of sinks (right) for the assignment.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mouse 1 1 1 4 5 7 9 11 7 8 7 2 6 1 8

human 1 1 0 2 11 8 16 19 16 15 9 16 6 7 12

0

5

10

15

20

25

30

o

f
cl

as
se

s

distance to reference alignment

pagerank

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mouse 0 0 2 5 8 7 12 12 13 8 10 10 5 4 7

human 0 0 1 2 9 16 18 9 19 14 24 14 20 11 12

0

5

10

15

20

25

30

o

f
cl

as
se

s

distance to reference alignment

modularity

Figure 6.17: Distance to the reference alignment in the given ontology when using
pagerank (left) or modularity (right) for the assignment.

For all of the single distance measures as well as the combined distance measure
the results show that the average distance gets a bit smaller when compared to
the results without the consistency check. Even more interesting is the number
of classes that actually were aligned by the algorithm. Generally the consistency
check leads to a smaller number of classes aligned. Since the average distance
is also decreased the overall quality of the consistent alignment is higher.

6.3.6 Evaluation of the Presented Results

The results presented in this section focus on three topics: evaluation of the
structural distance measures, evaluation of search techniques to produce an
ontology alignment and the performance of the alignment algorithm presented
on a real world dataset.
Especially in the evaluation of the Anatomy dataset it becomes clear that the
single distance measures do have some relationship with the alignment of the
ontologies. However it is shown in the Benchmark dataset, that the performance
can be greatly increased by combining the single measures.
The evaluation of the algorithm on the Benchmark dataset has also shown that
it is very sensitive to the order in which the classes are processed. Ordering
the classes by pagerank achieved the best results. Doing local optimization of

68

6.3. Ontology Matching

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mouse 5 2 3 9 11 10 13 18 15 15 13 5 6 1 4

human 5 1 5 12 8 17 18 15 19 23 20 13 18 11 20

0

5

10

15

20

25

30

o

f
cl

as
se

s

distance to reference alignment

children, sinks, depth, pagerank,
modularity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mouse 3 3 5 13 3 7 12 13 4 9 11 7 8 12 2

human 3 3 7 3 7 12 9 21 18 18 19 12 16 5 12

0

5

10

15

20

25

30

o

f
cl

as
se

s

distance to reference alignment

consistency, children, sinks, depth,
pagerank, modularity

Figure 6.18: Distance to the reference alignment in the given ontology when using
all measures with equal weight (left) and the same setting with the additional
consistency check (right).

Measure Min Max µ σ Min Max µ σ Σ
Depth 0 15 7.8 4.0 0 21 11.1 5.6 105

Children 1 15 7.3 3.8 1 21 10.6 5.4 56
Sinks 3 13 6.3 3.1 3 19 9.9 4.4 40

Pagerank 0 20 7.8 4.0 0 23 11.0 5.6 105
Modularity 3 17 8.9 3.9 3 24 12.3 5.0 98
Combined 0 18 7.1 3.2 0 25 11.2 5.7 290

Table 6.4: Statistical measures for the distribution of the distances to the reference
alignment for the different measures when also checking consistency.

the alignment using tabu search further enhanced the results. Also simulated
annealing gave reasonable results even though not as good as the combination
of ordering, best-first search and tabu search.

6.3.7 Final Considerations

When comparing the presented results to the results of other algorithms it
becomes quite clear that the overall performance of the pure structural matching
is not satisfying on both test sets. Other algorithms using word similarity
measures such as [46] on average perform much better on the artificial examples
from the Benchmark dataset as well as the more real world anatomy dataset.
Nevertheless the experiments have shown that structural matching usually will
find a neighbourhood class of the real alignment. This could be used to help
to reduce the search space or partition the classed of the ontology for other
approaches and thus increase the overall quality of the alignment.

69

Chapter 7

Conclusion

This chapter concludes the research done for this thesis. It will first give a
short overview on the topics that were dealt with by answering the research
questions and the problem statement. At the end some ideas are given that
show promising directions for future research.

7.1 Answering the Research Questions

In section 1.3 five research questions are given. These questions will now be
answered according to the results of the proceeding chapters and especially the
results of chapter 6.

• Which structures of Microsoft SharePoint can be used to represent ontolo-
gies?

In chapter 3 a closer look was taken at the state of the art technologies avail-
able in Microsoft SharePoint. SharePoint itself only offers the Taxonomy store,
a component capable of using simple taxonomies for tagging. However the no-
tion of taxonomies usually is not enough. SharePoint also offers several basic
interfaces like custom fields, services and web parts that can be extended to rep-
resent ontologies as it was done in chapter 4. All of these components find their
data basis in OWL for .NET, a program library especially implemented for the
Semantic Repository to work with ontologies from within .NET programming
languages.

• How can these structures be used to tag data saved in the repository?

As already mentioned a basic tagging functionality was already available in
SharePoint. Nevertheless most of the functionality had to be adapted in order
to work with ontologies. In chapter 4 several ways to instantiate a tagging
system based on an ontology are presented: class instantiation, a method closely
related to traditional tagging and the list from ontology method that sets up the
complete structure of the SharePoint repository based on an ontology. The two

71

7. Conclusion

approaches were tested for usability together witch researchers from different
fields and were found convenient to use for daily routines.
A lot of different formats for storing metadata were encountered during the
implementation of the Semantic Repository. For most formats giving explicit
semantics there exists a standard way to convert between formats. However this
task is more complicated when no explicit semantics are defined. Among other
ways of representing metadata schema ontologies offer the widest expressiveness
and therefore can represent metadata schemas defined in any other format.
While it is formally possible to transfer some of these metadata schemas into
an ontology the results in section 6.2 show that this conversion is not always
satisfying for the application in the project.

• How can different retrieval techniques be used to retrieve data from the
repository?

The retrieval of the data is one of the final considerations for the Semantic
Repository. After all three retrieval techniques are proposed in section 4.4:
Full text search as the most basic variant, faceted search that can greatly take
advantage of the formal definition of the ontology as well as an Export into the
OWL format to make the metadata available in semantic web search engines an
other programs.

• Can structural measures describe the elements of an ontology?

In chapter 5 different measures to express the structural properties of classes are
proposed. Using these measures the classes in an ontology can be described and
classes having similar structural properties can be found in the same but also in
other ontologies. How these measures and their combinations relate to ontology
alignments was checked against reference problems of the OAEI in section 6.3.
Some of the measures describe the class better than others, yet they can be
combined to lead to the best structural description.

• Can different ontologies be matched using only their structure?

From the experimental results in chapter 6 it gets quite clear that only based
on the structural measures presented, ontology alignments can be performed.
However it could also be observed that the structural alignment algorithm is
very sensitive to the order in which the classes are processed. This issue could
partially be avoided by using search algorithms, tabu search and simulated
annealing, to optimize the result. Compared to other alignment algorithms the
structural alignment algorithm presented does not lead to satisfying results.
Still it is possible to enhance the algorithms and to combine them with other
similarity measures to boost the overall performance.

7.2 Problem Statement and the Semantic Repos-
itory

The overall goal of the thesis in the context of Projekt Repository was to de-
velop an extension to Microsoft SharePoint 2010 that allows researchers of dif-

72

7.3. Future Research

ferent disciplines to tag multimedia data in different user defined ontologies.
Among the theoretical basis for this extension the Semantic Repository was
implemented, rolled out and tested with the researchers.

A first prototype of the product was released during the thesis and has already
been evaluated as stated in section 6.1. Nevertheless there are still some open
practical considerations in many details of the product that will be addressed
in the further proceeding of Projekt Repository.

7.3 Future Research

Finally some directions of research are given that point to future challenges
that can be addressed based on the issues discussed in this thesis. At first some
of the open practical considerations are presented for the Semantic Repository.
The second section points at improvements of the ontology alignment algorithm.
The final section presents some prospects of the Semantic Web.

7.3.1 Practical considerations

Based on the presented prototype it is now possible to collect user experiences
when working with the system. The prototype will be improved to provide a
low-threshold access method to create and maintain semantic data for a variety
of researchers. The future challenges before finally introducing the product are:

• Building a more seamless integration of ontology creation and handling in
the SharePoint UI to provide a low-threshold to access the semantic tools.

• Adoption of features already supplied by SharePoint like advanced search
techniques, indexing and custom data providers.

• Further tests to raise usability and acceptance of the system to be able to
implement it for more research groups at RWTH Aachen University.

7.3.2 Ontology Alignment

The different measures for structural ontology matching were based on simple
statistical measures and rather trivial approaches for the matching function.
Also the algorithm was focussed solely on aligning the ontologies based on their
structure.

It is very well possible that the presented similarity measures can be extended
by other, more sophisticated, measures from graph theory. Furthermore the
alignment algorithm would profit from the use of a more advanced search tech-
nique to find the best possible alignment as the best first search used for the
experiments turned out to be quite prone to the order in which the classes are
processed. However the improvements achieved by using tabu search and simu-
lated annealing show that it is very likely to find more robust alignments using
other search techniques.

73

7. Conclusion

The combination of structural and terminological or semantic alignment ap-
proaches will most probably lead to better results as the weaknesses and strengths
of the different approaches are likely to compensate. The combination of mul-
tiple alignment techniques could for instance be achieved by majority voting or
learning algorithms.
Also during the thesis research the area of social network analysis drew some
attention as it also covers different graph based algorithms. The task to find
correspondences in different social networks is very close to alignment of ontolo-
gies. Looking at this field might as well be rewarding as this area of research is
very active.

7.3.3 Semantic Web

Using the Semantic Repository a user interface to the Semantic Web was devel-
oped — allowing users to interactively make semantic definitions. Maybe this
application can reduce the fear of contact with the Semantic Web, OWL and
RDF as it was stated by Tim Bray in one of his blog entries [59]:

[. . .] RDF has ignored what I consider to be the central lesson of the
World Wide Web, the "View Source" lesson. The way the Web grew
was, somebody pointed their browser at a URI, were impressed by
what they saw, wondered "How’d they do that?", hit View Source,
and figured it out by trial and error.
This hasn’t happened and can’t happen with RDF [. . .]

However the need to retrieve information from a tremendous and still growing
mass of data as well as the increasing number of internet services offered by
companies and governments raise the need for semantic tagging as the number
of alternatives and choices overwhelms the intellectual grasp of the user. This
development will make the Semantic Web inevitable and therefore boost the
meaning of ontologies as a structural interchange format among agents.

74

Appendix A

OWL API for .Net Class
Diagrams

Figure A.1: Class diagram of OWL API for .Net showing the inheritance relations
of the implemented interfaces.

75

A. OWL API for .Net Class Diagrams

Figure A.2: Class diagram of OWL API for .Net showing the cardinality of the
relations among the defined interfaces.

76

Appendix B

CodePlex Repository

The source codes of the practical implementations done for the thesis are avail-
able at CodePlex:

• OWL for .NET: http://owl4net.codeplex.com/
Contains the library OWL for .NET as well as the matching features
presented in section 5.2.

• Semantic Repository: http://semrepo.codeplex.com/
Contains the code for the SharePoint extensions implemented for the Se-
mantic Repository as presented in chapter 4.

Both projects are published under an open source license. Especially the Se-
mantic Repository will be developed further as part of Projekt Repository

77

http://owl4net.codeplex.com/
http://semrepo.codeplex.com/

Appendix C

Experiment Results

In this chapter the full result graphs of the experiments presented in section
6.3.2 are depicted for further reference.

79

C. Experiment Results

00,10,20,30,40,50,60,70,80,91

children,
sinks,
children, sinks,
depth,
children, depth,
sinks, depth,
children, sinks, depth,
pagerank,
children, pagerank,
sinks, pagerank,
children, sinks, pagerank,
depth, pagerank,
children, depth, pagerank,
sinks, depth, pagerank,
children, sinks, depth, pagerank,
modularity,
children, modularity,
sinks, modularity,
children, sinks, modularity,
depth, modularity,
children, depth, modularity,
sinks, depth, modularity,
children, sinks, depth, modularity,
pagerank, modularity,
children, pagerank, modularity,
sinks, pagerank, modularity,
children, sinks, pagerank, modularity,
depth, pagerank, modularity,
children, depth, pagerank, modularity,
sinks, depth, pagerank, modularity,
children, sinks, depth, pagerank, modularity,
consistency,
consistency, children,
consistency, sinks,
consistency, children, sinks,
consistency, depth,
consistency, children, depth,
consistency, sinks, depth,
consistency, children, sinks, depth,
consistency, pagerank,
consistency, children, pagerank,
consistency, sinks, pagerank,
consistency, children, sinks, pagerank,
consistency, depth, pagerank,
consistency, children, depth, pagerank,
consistency, sinks, depth, pagerank,
consistency, children, sinks, depth, pagerank,
consistency, modularity,
consistency, children, modularity,
consistency, sinks, modularity,
consistency, children, sinks, modularity,
consistency, depth, modularity,
consistency, children, depth, modularity,
consistency, sinks, depth, modularity,
consistency, children, sinks, depth, modularity,
consistency, pagerank, modularity,
consistency, children, pagerank, modularity,
consistency, sinks, pagerank, modularity,
consistency, children, sinks, pagerank, modularity,
consistency, depth, pagerank, modularity,
consistency, children, depth, pagerank, modularity,
consistency, sinks, depth, pagerank, modularity,
consistency, children, sinks, depth, pagerank, modularity,

P
re

ci
si

on
R

ec
al

l
F

-m
ea

su
re

Figure C.1: Full diagram of the results of the matching algorithm matching 101
against 201 using the different similarity measures.

80

00,10,20,30,40,50,60,70,80,91

children,
sinks,
children, sinks,
depth,
children, depth,
sinks, depth,
children, sinks, depth,
pagerank,
children, pagerank,
sinks, pagerank,
children, sinks, pagerank,
depth, pagerank,
children, depth, pagerank,
sinks, depth, pagerank,
children, sinks, depth, pagerank,
modularity,
children, modularity,
sinks, modularity,
children, sinks, modularity,
depth, modularity,
children, depth, modularity,
sinks, depth, modularity,
children, sinks, depth, modularity,
pagerank, modularity,
children, pagerank, modularity,
sinks, pagerank, modularity,
children, sinks, pagerank, modularity,
depth, pagerank, modularity,
children, depth, pagerank, modularity,
sinks, depth, pagerank, modularity,
children, sinks, depth, pagerank, modularity,
consistency,
consistency, children,
consistency, sinks,
consistency, children, sinks,
consistency, depth,
consistency, children, depth,
consistency, sinks, depth,
consistency, children, sinks, depth,
consistency, pagerank,
consistency, children, pagerank,
consistency, sinks, pagerank,
consistency, children, sinks, pagerank,
consistency, depth, pagerank,
consistency, children, depth, pagerank,
consistency, sinks, depth, pagerank,
consistency, children, sinks, depth, pagerank,
consistency, modularity,
consistency, children, modularity,
consistency, sinks, modularity,
consistency, children, sinks, modularity,
consistency, depth, modularity,
consistency, children, depth, modularity,
consistency, sinks, depth, modularity,
consistency, children, sinks, depth, modularity,
consistency, pagerank, modularity,
consistency, children, pagerank, modularity,
consistency, sinks, pagerank, modularity,
consistency, children, sinks, pagerank, modularity,
consistency, depth, pagerank, modularity,
consistency, children, depth, pagerank, modularity,
consistency, sinks, depth, pagerank, modularity,
consistency, children, sinks, depth, pagerank, modularity,

P
re

ci
si

on
R

ec
al

l
F

-m
ea

su
re

Figure C.2: Full diagram of the results of the matching algorithm matching 101
against 202 using the different similarity measures.

81

C. Experiment Results

00,10,20,30,40,50,60,70,80,91

children,
sinks,
children, sinks,
depth,
children, depth,
sinks, depth,
children, sinks, depth,
pagerank,
children, pagerank,
sinks, pagerank,
children, sinks, pagerank,
depth, pagerank,
children, depth, pagerank,
sinks, depth, pagerank,
children, sinks, depth, pagerank,
modularity,
children, modularity,
sinks, modularity,
children, sinks, modularity,
depth, modularity,
children, depth, modularity,
sinks, depth, modularity,
children, sinks, depth, modularity,
pagerank, modularity,
children, pagerank, modularity,
sinks, pagerank, modularity,
children, sinks, pagerank, modularity,
depth, pagerank, modularity,
children, depth, pagerank, modularity,
sinks, depth, pagerank, modularity,
children, sinks, depth, pagerank, modularity,
consistency,
consistency, children,
consistency, sinks,
consistency, children, sinks,
consistency, depth,
consistency, children, depth,
consistency, sinks, depth,
consistency, children, sinks, depth,
consistency, pagerank,
consistency, children, pagerank,
consistency, sinks, pagerank,
consistency, children, sinks, pagerank,
consistency, depth, pagerank,
consistency, children, depth, pagerank,
consistency, sinks, depth, pagerank,
consistency, children, sinks, depth, pagerank,
consistency, modularity,
consistency, children, modularity,
consistency, sinks, modularity,
consistency, children, sinks, modularity,
consistency, depth, modularity,
consistency, children, depth, modularity,
consistency, sinks, depth, modularity,
consistency, children, sinks, depth, modularity,
consistency, pagerank, modularity,
consistency, children, pagerank, modularity,
consistency, sinks, pagerank, modularity,
consistency, children, sinks, pagerank, modularity,
consistency, depth, pagerank, modularity,
consistency, children, depth, pagerank, modularity,
consistency, sinks, depth, pagerank, modularity,
consistency, children, sinks, depth, pagerank, modularity,

P
re

ci
si

on
R

ec
al

l
F

-m
ea

su
re

Figure C.3: Full diagram of the results of the matching algorithm matching 101
against 222 using the different similarity measures.

82

00,10,20,30,40,50,60,70,80,91

children,
sinks,
children, sinks,
depth,
children, depth,
sinks, depth,
children, sinks, depth,
pagerank,
children, pagerank,
sinks, pagerank,
children, sinks, pagerank,
depth, pagerank,
children, depth, pagerank,
sinks, depth, pagerank,
children, sinks, depth, pagerank,
modularity,
children, modularity,
sinks, modularity,
children, sinks, modularity,
depth, modularity,
children, depth, modularity,
sinks, depth, modularity,
children, sinks, depth, modularity,
pagerank, modularity,
children, pagerank, modularity,
sinks, pagerank, modularity,
children, sinks, pagerank, modularity,
depth, pagerank, modularity,
children, depth, pagerank, modularity,
sinks, depth, pagerank, modularity,
children, sinks, depth, pagerank, modularity,
consistency,
consistency, children,
consistency, sinks,
consistency, children, sinks,
consistency, depth,
consistency, children, depth,
consistency, sinks, depth,
consistency, children, sinks, depth,
consistency, pagerank,
consistency, children, pagerank,
consistency, sinks, pagerank,
consistency, children, sinks, pagerank,
consistency, depth, pagerank,
consistency, children, depth, pagerank,
consistency, sinks, depth, pagerank,
consistency, children, sinks, depth, pagerank,
consistency, modularity,
consistency, children, modularity,
consistency, sinks, modularity,
consistency, children, sinks, modularity,
consistency, depth, modularity,
consistency, children, depth, modularity,
consistency, sinks, depth, modularity,
consistency, children, sinks, depth, modularity,
consistency, pagerank, modularity,
consistency, children, pagerank, modularity,
consistency, sinks, pagerank, modularity,
consistency, children, sinks, pagerank, modularity,
consistency, depth, pagerank, modularity,
consistency, children, depth, pagerank, modularity,
consistency, sinks, depth, pagerank, modularity,
consistency, children, sinks, depth, pagerank, modularity,

P
re

ci
si

on
R

ec
al

l
F

-m
ea

su
re

Figure C.4: Full diagram of the results of the matching algorithm matching 101
against 223 using the different similarity measures.

83

Appendix D

Prototype Presentation

This chapter shows the slides used to introduce the product to the researchers
participating in Projekt Repository. They were used during the workshops de-
scribed in section 6.1.

85

D. Prototype Presentation

15.06.2012

1

Rechen- und Kommunikationszentrum (RZ)

Prototyp Taxonomien und

Ontologien

für Projekt Repository

Marius Politze

Projekt Repository Prototyp: Taxonomien und Ontologien

Marius Politze | Rechen- und Kommunikationszentrum
2

 Bearbeiten und Erstellen von Ontologien als Metadatenschema

 Protégé

 Grundlegende Eigenschaften

 Format

 Einbinden von Ontologien im in SharePoint

 Hinzufügen/Verwalten von Ontologien

 Anlegen/Erweitern einer Liste

 Hinzufügen von Metadaten, Klassifizierung

 Verknüpfung zwischen Instanzen

Übersicht

Projekt Repository Prototyp: Taxonomien und Ontologien

Marius Politze | Rechen- und Kommunikationszentrum
3

Protégé

 http://protege.stanford.edu/

 „Protégé is a free, open source ontology editor and knowledge-base

framework.“

Projekt Repository Prototyp: Taxonomien und Ontologien

Marius Politze | Rechen- und Kommunikationszentrum
4

Metadaten und Ontologien

 Ontologien beschreiben „Dinge und ihre Eigenschaften“

 Classes Beschreibung von Objekten

 Object Properties: Beschreibung von Zusammenhängen zwischen

Objekten

 Data Properties: Beschreibung von Werten von Objekten

Projekt Repository Prototyp: Taxonomien und Ontologien

Marius Politze | Rechen- und Kommunikationszentrum
5

Beispiel

 Klassen

 Beziehungen

Class:
License

Document

license

Projekt Repository Prototyp: Taxonomien und Ontologien

Marius Politze | Rechen- und Kommunikationszentrum
6

Beispiel

License
Document

license
datei.pdf

Apache
License.txt

type

Figure D.1: Slides 1-6 of the presentation of the Semantic Repository for the col-
laborating researchers.

86

15.06.2012

2

Projekt Repository Prototyp: Taxonomien und Ontologien

Marius Politze | Rechen- und Kommunikationszentrum
7

Beispiel

License
Document

license
datei.pdf

Apache
License.txt

type

13.06.2012

Testdatei Apache License v2

01.01.2004
…
…
…

Projekt Repository Prototyp: Taxonomien und Ontologien

Marius Politze | Rechen- und Kommunikationszentrum
8

Ontologien in SharePoint

 Hinzufügen

 Verwalten

Projekt Repository Prototyp: Taxonomien und Ontologien

Marius Politze | Rechen- und Kommunikationszentrum
9

Listen anlegen / erweitern

 Properties auswählen:

 Liste erzeugen

Projekt Repository Prototyp: Taxonomien und Ontologien

Marius Politze | Rechen- und Kommunikationszentrum
10

Beschreiben der Dateien

Projekt Repository Prototyp: Taxonomien und Ontologien

Marius Politze | Rechen- und Kommunikationszentrum
11

Klassifikation / Verknüpfung

Projekt Repository Prototyp: Taxonomien und Ontologien

Marius Politze | Rechen- und Kommunikationszentrum
12

Export

<Class rdf:about="&dcterms;LicenseDocument">

 <rdfs:label xml:lang="en-us">License Document</rdfs:label>

 <rdfs:subClassOf rdf:resource="&dcterms;RightsStatement"/>

 <dcterms:issued>2008-01-14</dcterms:issued>

 <rdfs:comment xml:lang="en-us">

 A legal document giving official permission to do something with a Resource.

 </rdfs:comment>

</Class>

<ObjectProperty rdf:about="&dcterms;license">

 <rdfs:label xml:lang="en-us">License</rdfs:label>

 <rdfs:comment xml:lang="en-us">

 A legal document giving official permission to do something with the resource.

 </rdfs:comment>

 <rdfs:range rdf:resource="&dcterms;LicenseDocument"/>

</ObjectProperty>

Figure D.2: Slides 7-12 of the presentation of the Semantic Repository for the
collaborating researchers.

87

Appendix E

Bibliography

[1] M. Kleiner, P. Omling, I. Halliday, P. Gruss, G. Makara, M. Makarow,
A. Migus, E. Nexø, and J. Marks, “The EUROHORCs and ESF Vision
on a Globally Competitive ERA and their Road Map for Actions to Help
Build It,” Science Policy Briefing, no. 33, Jun. 2008.

[2] U. Eich, “RWTH Aachen, Hochschulbibliothek,” University Library at
RWTH Aachen University, 2012. [Online]. Available: http://www.bth.
rwth-aachen.de/

[3] R. Knüchel-Clarke, “Head and Secretary [UK Aachen],” Institute
of Pathology, University Hospital Aachen, 2012. [Online]. Available:
http://www.pathologie.ukaachen.de

[4] M. R. N. Jansen, “RWTHsbg,” Department of History of Urbanization,
RWTH Aachen University, 2012. [Online]. Available: http://sbg.arch.
rwth-aachen.de/

[5] H. Schüttrumpf, “IWW-Homepage,” Institute of Hydraulic Engineering
and Water Resources Management, RWTH Aachen University, 2012.
[Online]. Available: http://www.iww.rwth-aachen.de/

[6] K. Brühl, “Rechen- und Kommunikationszentrum der RWTH Aachen,”
Center for Computing and Communication of RWTH Aachen University,
2012. [Online]. Available: http://www.rz.rwth-aachen.de/

[7] U. Schröder, “CIL,” Center for Innovative Learning Technologies, RWTH
Aachen University, 2012. [Online]. Available: http://www.cil.rwth-aachen.
de/

[8] C. Bischof, U. Eich, R. Knüchel-Clarke, M. Jansen, and H. Schüttrumpf,
“ProjektRepository, Ein pandisziplinäres Repository für Forschungspro-
jekte als Komponente einer niederschwelligen webbasierten Kooperationsin-
frastruktur,” 2009, DFG-Antrag.

[9] U. Schröder, U. Eich, R. Knüchel-Clarke, M. Jansen, and H. Schüttrumpf,
“ProjektRepository, Ein pandisziplinäres Repository für Forschungspro-
jekte als Komponente einer niederschwelligen webbasierten Kooperationsin-
frastruktur,” 2011, Zwischenbericht.

89

http://www.bth.rwth-aachen.de/
http://www.bth.rwth-aachen.de/
http://www.pathologie.ukaachen.de
http://sbg.arch.rwth-aachen.de/
http://sbg.arch.rwth-aachen.de/
http://www.iww.rwth-aachen.de/
http://www.rz.rwth-aachen.de/
http://www.cil.rwth-aachen.de/
http://www.cil.rwth-aachen.de/

E. Bibliography

[10] T. Berners-Lee and M. Fischetti, Weaving the web: The original design
and ultimate destiny of the world wide web by its inventor. San Francisco:
Harper, 1999.

[11] L. Feigenbaum, I. Herman, T. Hongsermeier, E. Neumann, and S. Stephens,
“The Semantic Web in Action,” Scientific American, vol. 297, pp. 90–97,
Dec. 2007.

[12] Pathology Reporting in Breast Cancer Screening, 2nd ed., ser. UK: Breast
Screening Publications. National Coordinating Group for Breast Screening
Pathology, 1995.

[13] European Guidelines for Quality Assurance in Mammography Screening.
European Commission, 1996.

[14] T. R. Gruber, “A translation approach to portable ontology specifications,”
Knowledge Aquisition, vol. 5, pp. 199–220, 1993.

[15] D. Fensel, Ontologies: A Silver Bullet for Knowledge Management and
Electronic Commerce. Springer-Verlag, 2004.

[16] L. M. Garshol, “Metadata? Thesauri? Taxonomies? Topic Maps! Making
Sense of it all,” Journal of Information Science, vol. 30, no. 4, pp. 378–391,
Aug. 2004.

[17] W3C OWL Working Group, “OWL 2 Web Ontology Language
Document Overview,” W3C, Tech. Rep., Oct. 2009. [Online]. Available:
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

[18] G. Klyne and J. J. Carroll, “Resource Description Framework (RDF):
Concepts and Abstract Syntax,” W3C, Tech. Rep., Feb. 2004. [Online].
Available: http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

[19] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource
Identifier (URI): Generic Syntax,” Internet Society (ISOC), Internet
Engineering Task Force RFC 3986, Jan. 2005. [Online]. Available:
http://tools.ietf.org/html/rfc3986

[20] W3C OWL Working Group, “OWL Web Ontology Language Semantics
and Abstract Syntax,” W3C, Tech. Rep., Feb. 2004. [Online]. Available:
http://www.w3.org/TR/owl-semantics/

[21] T. Bray, J. P. Paoli, C. Sperberg-McQueen, E. Maler, and F. Yergeau,
“Extensible markup language (XML) 1.0,” W3C, Tech. Rep., 11 2008.
[Online]. Available: http://www.w3.org/TR/2008/REC-xml-20081126/

[22] B. Motik, P. F. Patel-Schneider, and B. Parsia, “OWL 2 Web Ontology
Language Structural Specification and Functional-Style Syntax,” W3C,
Tech. Rep., Oct. 2009. [Online]. Available: http://www.w3.org/TR/
owl2-syntax/

[23] M. Horridge and P. F. Patel-Schneider, “OWL 2 Web Ontology Language
Manchester Syntax,” W3C, Tech. Rep., Oct. 2009. [Online]. Available:
http://www.w3.org/TR/owl2-manchester-syntax/

90

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://tools.ietf.org/html/rfc3986
http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-manchester-syntax/

[24] J. Day-Richter, “The OBO Flat File Format Specification, version
1.2,” The Gene Ontology Consortium, Tech. Rep., Nov. 2004. [Online].
Available: http://www.geneontology.org/GO.format.obo-1_2.shtml

[25] P. F. Patel-Schneider and B. Swartout, “Description-Logic Knowledge Rep-
resentation System Specification from the KRSS Group of the ARPA
Knowledge Sharing Effort,” •, Tech. Rep., Nov. 1993.

[26] W3C RDF Working Group, “Turtle,” W3C, Tech. Rep., Aug. 2011.
[Online]. Available: http://www.w3.org/TR/2011/WD-turtle-20110809/

[27] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, “XML
Schema Part 1: Structures Second Edition,” W3C, Tech. Rep., Oct. 2004.
[Online]. Available: http://www.w3.org/TR/xmlschema-1/

[28] Stanford Center for Biomedical Informatics Research, “The Protégé
Ontology Editor and Knowledge Acquisition System,” 2012. [Online].
Available: http://protege.stanford.edu

[29] “DCMI Home: Dublin Core R© Metadata Initiative (DCMI),” Dublin Core
Metadata Initiative. [Online]. Available: http://dublincore.org/

[30] J. McEntyre and D. Lipman, “PubMed: bridging the information gap,”
Canadian Medical Association Journal, vol. 164, pp. 1317–1319.

[31] LIDO (Lightweight Information Describing Objects): Making it easier to
deliver information to portals, International Council of Museums. [Online].
Available: http://www.lido-schema.org/documents/LIDO-Handout.pdf

[32] ISO-19115, “ISO 19115:2003 Geographic information – Metadata,” Tech.
Rep., 2003.

[33] M. Ferdinand, C. Zirpins, and D. Trastour, “Lifting XML Schema to
OWL,” in Web Engineering - 4th International Conference, ICWE 2004,
Munich, Germany, July 26-30, 2004, Proceedings, N. Koch, P. Fraternali,
and M. Wirsing, Eds. Springer Heidelberg, 2004, pp. 354–358.

[34] R. G. González, “A semantic web approach to digital rights management,”
Ph.D. dissertation, Universitat Pompeu Fabra, Barcelona, Nov. 2005.

[35] Microsoft Cooperation, Server and Site Architecture: Object Model
Overview, May 2010. [Online]. Available: http://msdn.microsoft.com/
en-us/library/ms473633.aspx

[36] M. Horridge and S. Bechhofer, “The OWL API: A Java API for Working
with OWL 2 Ontologies,” in OWLED, ser. CEUR Workshop Proceedings,
R. Hoekstra and P. F. Patel-Schneider, Eds., vol. 529, Oct. 2008.

[37] O. Ben-Yitzhak, N. Golbandi, N. Har’El, R. Lempel, A. Neumann,
S. Ofek-Koifman, D. Sheinwald, E. Shekita, B. Sznajder, and S. Yogev,
“Beyond basic faceted search,” in Proceedings of the international
conference on Web search and web data mining, ser. WSDM ’08.
New York, NY, USA: ACM, 2008, pp. 33–44. [Online]. Available:
http://doi.acm.org/10.1145/1341531.1341539

91

http://www.geneontology.org/GO.format.obo-1_2.shtml
http://www.w3.org/TR/2011/WD-turtle-20110809/
http://www.w3.org/TR/xmlschema-1/
http://protege.stanford.edu
http://dublincore.org/
http://www.lido-schema.org/documents/LIDO-Handout.pdf
http://msdn.microsoft.com/en-us/library/ms473633.aspx
http://msdn.microsoft.com/en-us/library/ms473633.aspx
http://doi.acm.org/10.1145/1341531.1341539

E. Bibliography

[38] M. A. Hearst, “Design recommendations for hierarchical faceted search
interfaces,” in SIGIR, Workshop on Faceted Search, Aug. 2006, pp. 26–30.

[39] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Language
for RDF,” W3C, Tech. Rep., Jan. 2008. [Online]. Available: http:
//www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

[40] M. d’Aquin, M. Sabou, M. Dzbor, C. Baldassarre, L. Gridinoc, S. Angele-
tou, and E. Motta, “Watson: a gateway for the semantic web,” in The 4th
Annual European Semantic Web Conference, ser. ESWC 2007, 2007.

[41] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari,
V. Doshi, and J. Sachs, “Swoogle: a search and metadata engine for the
semantic web,” in Proceedings of the thirteenth ACM international confer-
ence on Information and knowledge management, ser. CIKM ’04. New
York, NY, USA: ACM, 2004, pp. 652–659.

[42] R. T. Fielding, “Architectural styles and the design of network-based soft-
ware architectures,” Ph.D. dissertation, University of California, 2000.

[43] J. Euzenat and P. Shvaiko, Ontology matching. Heidelberg (DE): Springer-
Verlag, 2007.

[44] P. Shvaiko and J. Euzenat, “Ontology Alignment Evaluation Initia-
tive::Home,” 2012. [Online]. Available: http://oaei.ontologymatching.org

[45] P. Shvaiko and J. Euzenat, “Ontology matching: state of the art and
future challenges,” IEEE Transactions on knowledge and data engineering,
2012, in press. [Online]. Available: http://doi.ieeecomputersociety.org/10.
1109/TKDE.2011.253

[46] MaasMatch results for OAEI 2011, ser. The Sixth International Workshop
on Ontology Matching. Bonn, Germany: ISWC, Oct. 2011.

[47] S. Umeyama, “An eigendecomposition approach to weighted graph match-
ing problems,” Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 10, no. 5, pp. 695–703, 1988.

[48] S. Gold and A. Rangarajan, “A graduated assignment algorithm for graph
matching,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 18, no. 4, pp. 377–388, 1996.

[49] M. Mukherjee and L. Holder, “Graph-based data mining on social net-
works,” Ph.D. dissertation, University of Texas at Arlington, 2004.

[50] C. Tantipathananandh, T. Berger-Wolf, and D. Kempe, “A framework for
community identification in dynamic social networks,” in Proceedings of the
13th ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 2007, pp. 717–726.

[51] S. Kpodjedo, P. Galinier, and G. Antoniol, “Enhancing a tabu algorithm for
approximate graph matching by using similarity measures,” Evolutionary
Computation in Combinatorial Optimization, pp. 119–130, 2010.

92

http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://oaei.ontologymatching.org
http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.253
http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.253

[52] M. E. J. Newman, “Finding community structure in networks using the
eigenvectors of matrices,” Physical Review E, vol. 74, 2006. [Online].
Available: doi:10.1103/PhysRevE.74.036104

[53] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep. 1999-66,
November 1999. [Online]. Available: http://ilpubs.stanford.edu:8090/422/

[54] F. Glover, “Tabu search-part i,” ORSA Journal on computing, vol. 1, no. 3,
pp. 190–206, 1989.

[55] F. Glover, “Tabu search-part ii,” ORSA Journal on computing, vol. 2, no. 1,
pp. 4–32, 1990.

[56] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi, “Optimization by simulated
annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[57] M. Jaspers, T. Steen, C. Bos, and M. Geenen, “The think aloud method: a
guide to user interface design,” International journal of medical informat-
ics, vol. 73, no. 11, pp. 781–795, 2004.

[58] Contributing Contributing Content to Content to Cultural Heritage
Repositories, International Council of Museums. [Online]. Available:
http://www.lido-schema.org/documents/LIDO-Introduction.pdf

[59] T. Bray, “The RDF.net Challenge,” 2003. [Online]. Available: http:
//www.tbray.org/ongoing/When/200x/2003/05/21/RDFNet

93

doi:10.1103/PhysRevE.74.036104
http://ilpubs.stanford.edu:8090/422/
http://www.lido-schema.org/documents/LIDO-Introduction.pdf
http://www.tbray.org/ongoing/When/200x/2003/05/21/RDFNet
http://www.tbray.org/ongoing/When/200x/2003/05/21/RDFNet

	Preface
	Abstract
	Introduction
	Setting
	Metadata and Ontologies
	Problem Statement and Research Questions
	Practical Implementation

	Outline of the Thesis

	Ontologies
	Definition
	Formal Definition
	Ontology Semantics
	Terminology and Assertions
	Expressiveness
	Forms of Ontologies
	Ontologies and Metadata

	Representation
	Web Ontology Language
	Other Syntaxes for Ontology Representation
	Software

	Ontologies used in Projekt Repository
	General Ontology
	Domain Ontologies
	Ontology Conversion

	Microsoft SharePoint
	Structure of a SharePoint Website
	Document Management
	Extensibility

	Semantic Features
	Custom Fields
	Taxonomy Store
	Evaluation

	Design of the Semantic Repository
	The Semantic Repository
	OWL API for .Net
	Ontology Requirements

	Ontology Representation in SharePoint
	Class Instantiation
	List from Ontology

	Working with Ontologies
	Ontology Storage
	Instantiation
	Export

	Retrieval of Tagged Data
	Full Text Query
	Field Based Query
	Query by Class Definition

	OWL Representation
	Representation of Files Stored in the Repository
	REST Web Service

	Ontology Matching
	The Ontology Alignment Problem
	Ontology Alignment Evaluation Initiative
	Matching Techniques

	Structure Based Measures
	Adjacency Matrix
	Direct Neighbours
	Extended Neighbourhood
	Centrality
	Modularity

	Structure Based Matching Algorithm
	Prerequisites
	Alignment Algorithm
	Implementation

	Experiments
	Workshop
	Workshop Activities
	Workshop Evaluation

	Ontology Conversion
	Ontology Matching
	Evaluation Measures
	The Benchmark Dataset
	Results on the Benchmark Dataset
	The Anatomy Dataset
	Results on the Anatomy Dataset
	Evaluation of the Presented Results
	Final Considerations

	Conclusion
	Answering the Research Questions
	Problem Statement and the Semantic Repository
	Future Research
	Practical considerations
	Ontology Alignment
	Semantic Web

	OWL API for .Net Class Diagrams
	CodePlex Repository
	Experiment Results
	Prototype Presentation
	Bibliography

